全球旧事资料 分类
-1-0-22。我用高级袖珍计算机快速扫描,就能把百科全书的全部内容转变为一个庞大的数字。前面加一个小数点,就使它变成了一个十进制的分数,例如
02015015011……基塔先生在金属棒上找到了一个点,这个点将棒分为a和b两段,而a/b刚好等于上面那个十进制分数值。基塔:“回去后,测出a和b的值,就求出了它们的比值;根据编码的规定,你们的百科全书就被破译出来了。”这样,基塔离开地球时只带了一根金属棒,而他却已“满载而归”了!7不可逃遁的点帕特先生沿着一条小路上山。他早晨七点动身,当晚七点到达山顶。第二天早晨沿同一小路下,晚上七点又回到山脚,遇见了拓扑学老师克莱因。克莱因:“帕特,你可曾知道你今天下山时走过这样一个地点,你通过这点的时刻恰好与你昨天上山时通过这点的时刻完全相同?”帕特:“这绝不可能!我走路时快时慢,有时还停下来休息。”克莱因:“当你开始下山时,设想你有一个替身同时开始登山,这个替身登山的过程同你昨天登山时完全相同。你和这个替身必定要相遇。我不能断定你们在哪一点相遇,但一定会有这样一点。……”帕特明白了。你明白了吗?8橡皮绳上的蠕虫橡皮绳长1公里一条蠕虫在它的一端。蠕虫以每秒1厘米的稳定速度沿橡皮绳爬行;而橡皮绳每过1秒钟就拉长1公里。如此下去,蠕虫最后究竟会不会到达终点呢?乍一想,随着橡皮绳的拉伸,蠕虫离终点越来越远了。但细心的读者会想到:随着橡皮绳的每次拉伸,蠕虫也向前挪了。如果用数学公式表示,蠕虫在第
秒未在橡皮绳上的位置,表示为整条绳的分数就是(推导过程从略):当
足够大(约为e100000)时,上式的值就超过了1,也就是说蠕虫爬到了终点。9棘手的电灯一盏电灯,用按钮来开关。假定把灯拧开一分钟,然后关掉半分钟,再拧开14分钟,再关掉1/8分钟,如此往复,这一过程的末了恰好是两分钟。那么,在这一过程结束时,电灯是开着,还是关着?这个问题实在是难!回数猜想一提到李白,人们都知道这是我国唐代大诗人的名字。如果把“李白”两字颠倒一下,变成“白李”,这也是一个人的名字,此人姓白名李。像这样正着念、反着念都有意义的文字叫做“回文”。王融作有《春游回文诗》;“风朝指锦幔,月晓照莲池。”反过来读:“池莲照晓月,幔锦指朝风。”回文与数学里的“对称”相似。如果一个数,从左右来读都一样,就称它为回文式数。比如、101、32123、9999等都是回文式数。数学中有名的“回数猜想”之谜,至今没有r
好听全球资料 返回顶部