化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观二、教学目标设置:
本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。
“课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。
“课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性第一课时
为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下:1知识与技能:理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念;能利用图象法直观判断函数的单调性;
f初步掌握利用函数单调性定义从正反两个角度分析、判断、证明函数单调性理解函数单调性定义蕴含的不等关系,初步掌握利用作差比较推理证明函数单调性的方法2过程与方法:经历观察发现、归纳类比、抽象概括、符号表示、推理论证等思维过程,提高相应的数学思维能力;探索函数单调性的符号语言表述,体会数形结合、分类讨论、特殊与一般、无限与有限、等价转化等数学思想3情感、态度与价值观:通过观察生活常见数据例子,感受数学的科学价值与应用价值,提高学习数学的兴趣。通过自主学习、小组合作探究,形成独立思考、讨论争辩、合作整理的良好学习模式与氛围通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明的认知过程,形成对后续函数性质的一般研究方法,形成批判性的思维习惯,崇尚数学的理性精神,树立辩证唯物主义世界观三、学生学情分析:1学生已有基础:认知基础:从学生知识最近发展区来看。他们在初中已经接触过函数的单调性,不过那时没有提函数的单调性,而是用体现变量之间依赖关系的文字语言“y随x的增大而增大,y随x的增大而减小”来描述,符合学生的认知规律,同时一次函数、二次函数的图象直观地体现了函数的这一性质能理解不等关系,理解a>b可以等价转化为a-b>0a<b可以等价转化为a-b<0非认知基础:通过小学、初中和高中阶段集合与函数概念的学习,学生具有一定的抽象概括、类比归r