聚_成就梦想
πxππxπ2πx=si
cos-cossi
+22cos12-164642πx2πxπx=si
-cos+2cos26266πxπ2πx2πx+,=si
+cos=si
6426262π2π∴T===12ωπ62方法一:由题意知:ππgx=f2-x=si
62-x+4πx7ππx7π=si
-6+12=-si
6-12117ππx7ππ0,,∴-≤-≤∵x∈21261233πx7ππ11∴gxmi
=-,此时-=,即x=261232117方法二:可以求x∈0,2关于x=1的对称区间x∈-2,2上函数fx的最值.7.解:1∵fx=cosx+si
xcosx-si
x=cos2x-si
2x=cos2x,2π∴函数fx的最小正周期为T==π22由1得fx=cos2xα1β2∵f2=3,f2=3,12∴cosα=,cosβ=33ππ∵0<α<,0<β<,2222∴si
α=1-cos2α=,si
β=3∴si
α-β=si
αcosβ-cosαsi
β=2221542-5×-×=33339
1-cos2β=
53
18.解:1由m∥
,可得3si
x=-cosx,于是ta
x=-31-+1si
x+cosxta
x+132∴===-193si
x-2cosx3ta
x-23--232在△ABC中,A+B=π-C,于是si
A+B=si
C,由正弦定理知:3si
C=2si
Asi
C,∴si
A=3π,可解得A=23
ππ又△ABC为锐角三角形,于是<B<62∵fx=m+
m=si
x+cosx2si
x,-1
■点亮心灯v照亮人生■
f精诚凝聚_成就梦想
1-cos2x1=si
2x+si
xcosx-2=+si
2x-222π32=si
2x-4-2,2ππ3π223∴fB+8=2si
2B+8-4-2=2si
2B-2πππ由<B<,得<2B<π,62332323∴0<si
2B≤1,得-<si
2B-≤-,22222π323B+∈-,-即f8222
■点亮心灯v照亮人生■
fr