的商品商品2如果也是中性商品那么该题就无所谓无差异曲线也无所谓边际替代率了商品2如果不是中性商品
边际替代率是0把中性商品放在横轴上或者把中性商品放在纵轴上
71x1isi
defi
itelythesubstitutio
ofx2a
dfiveu
itsofx1ca
bri
gthesameutilityasthat
o
eu
itofx2ca
doWiththemostsimpleformoftheutilityfu
ctio
uxx15x2a
dassume
thatthepricesofthosetwogoodsarep1a
dp2respectivelya
dthetotalwealthoftheco
sumerismtheproblemca
bewritte
as
maxux1x2
stp1x1p1x2m
③Because5p1p2a
ybu
dlex1x2whichsatisfiesthebudgetco
strai
tisthesolutio
ofsuch
problem
2Acupofcoffeeisabsolutelythecompleme
toftwospoo
sofsugarLetx1a
dx2represe
tthese
733
ftwo
ki
ds
of
goods
the
we
ca
write
the
utility
fu
ctio
as
u
x1
x2
mi
x1
12
x2
Theproblemoftheco
sumeris
maxux1x2
stp1x1p1x2m
A
ysolutio
shouldsatisfiestherulethat
x1
12
x2
a
d
the
budget
co
strai
t
So
replace
x1
with
12x2i
thebudgetco
strai
ta
dweca
get
x1
mp12p2
a
dx2
2mp12p2
81Becausetheprefere
ceisCobbDouglasutilityweca
simplifythecomputatio
bytheformulathatthesta
dardizedparameterofo
ecommoditymea
sitsshareoftotalexpe
diture
So
directly
thea
sweris
x1
2m3p1
x2
m3p1
(详细方法见82)
(2)库恩塔克定理。Maxfx
stgix0i1…
定义:Lfxiigix
最优性条件为:
FOCfx
xk
i
i
gixxk
0
;
gix0;
i0;
互补松弛条件:igix0;如果i0,则gi0。如果i0,则gi0。
例
Maxuxyx1x2
stp1x1p2x2m
x10x20
Lx1x21mp1x1p2x22x13x2(注意这里的预算条件与定理的符号相反,从而下面有i0)
833
fFoc
12
1
x12
1p1
2
0
①
11p230②
p1x1p2x2mx10x20③
103020
互补松弛条件:1mp1x1p2x20④
2x10
⑤
3x20
⑥
由②知:
1
13p2
0
,所以由④知:p1x1p2x2m
⑦
Ⅰ。如果30,则x20,所以由⑦有
x1
mp1
0,从而20
1
再由①有
1
12
1mp1
2
1
由②
31p213
p22
1mp1
2
1
1
3必须满足30,所以,
p22
1mp1
2
10
m
p224p1
所以当m
p224p1
时,x1
mp1
,x2
0
Ⅱ。30,则x20,由①知x1
0,所以20,由因为30,所以由②知1
1p2
,代入①得,x1
p224p12
,
x2
mp2
p24p1
,因为x20,所以
mp2
p24p1
0mp224p1
所以,当mp224p1
时,解为:x1
p224p12
,x2
mp2
p24p1
。
大家也可以通过预算约束把x2表示成x2
mp2
p1x1p2
,然后代入到效用函数中讨r