56π-α的值为
1A3
B.-13
C232
D.-232
答案B
解析cos56π-α=cosπ2+π3-α
=-si
π3-α=-13
5.已知si
α+π2=13,α∈-π2,0,则ta
α等于
A.-22
B.22
C.-
24
2D4
答案A
解析si
α+π2=cosα=13,又α∈-π2,0,
所以si
α=-1-cos2α=-232,
则ta
α=csoi
sαα=-22
6.若ssii
αα+-ccoossαα=2,si
α-5πsi
32π-α等于
3A4C.±130答案B
3B10D.-130
fsi
α+cosαta
α+1
解析
=
=2,解得ta
α=3,则原式=-
si
α-cosαta
α-1
si
α-cosα=si
αcosα=si
s2i
αα+cocosαs2α=ta
ta2α
+α1=32+31=130
二、填空题7.已知α是锐角,且2ta
π-α-3cosπ2+β+5=0,ta
π+α+6si
π+β-1=0,则si
α的值是______________.
答案
31010
解析由已知可得-2ta
α+3si
β+5=0,ta
α-6si
β-1=0,
∴ta
α=3又ta
α=csoi
sαα,∴9=csoi
s22αα=1-si
si2
α2α,si
2α=190
∵α为锐角,∴si
α=31010
8.已知si
π2+α=34,则si
π2-α=________
答案
34
解析∵si
π2+α=cosα=34,
∴si
π2-α=cosα=34
9.化简sic
o32sπ52+π-ααcocso2s21-π-αα=________
f答案-1解析原式=si
π+cosπ2+2πα+cπ2o-s1α0πc+osαπ2-α=-sic
osπ2+π2-ααcocsosπ2α-α=-sic
oαscαossi
αα=-1三、解答题
10.2011~2012宜春高一检测化简:
cos2π-αsi
3π+αcos32π-αcos-π2+αcosα-3πsi
-π-α
cosα-si
α-si
α
解析
原式=si
α-cosαsi
α
=-1
11.若si
180°+α=-1100,0°α90°
求coss5i
40-°-αα++si
co-s-902°7-0°α-α的值.
解析由si
180°+α=-1100,α∈0°,90°,得si
α=1100,
fcosα=31010,
-si
α-si
90°+α∴原式=
cos360°+180°-α+cos270°+α
-si
α-cosα=
-cosα+si
α=--31110010-0+311011000=212.已知si
α是方程5x2-7x-6=0的根,α是第三象限角,求si
-coαs-π23-2παsic
os32ππ2-+ααta
3α的值.解析由已知得si
α=-35
∵α是第三象限角,∴cosα=-1-si
2α=-45∴原式=cosαsi
-αco-sαsi
αcsoi
sαα3=csoi
sαα=34
ffr