何非空集合的真子集。三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集.记作A∩B读作”A交B”,即A∩Bxx∈A,且x∈B.
第3页共25页
f2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B读作”A并B”,即A∪Bxx∈A,或x∈B.
3、交集与并集的性质:A∩AAA∩φφA∩BB∩A,A∪AA
A∪φAA∪BB∪A4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSAxxS且xA(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:⑴CUCUAA⑵CUA∩AΦ二、函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:yfx,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与
第4页共25页
fx的值相对应的y值叫做函数值,函数值的集合fxx∈A叫做函数的值域.
注意:2如果只给出解析式yfx,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.
定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:1分式的分母不等于零;2偶次方根的被开方数不小于零;3对数式的真数必须大于零;4指数、对数式的底必须大于零且不等于15如果函数是由一些基本函数通过四则运算结合而成的那么,它的定义域是使各部分都有意义的x的值组成的集合(6)指数为零底不可以等于零6实际问题中的函数的定义域还要保证实际问题有意义又注意:求出不等式组的解集即为函数的定义域。构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数
第5页共25页
f值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致两点r