面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
第2页(共12页)
f13.(5分)若x,y满足约束条件
,则z3x2y的最大值为
.
14.(5分)记S
为数列a
的前
项和.若S
2a
1,则S6
.
15.(5分)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有
种.(用数字填写答案)
16.(5分)已知函数f(x)2si
xsi
2x,则f(x)的最小值是
.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生
都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12分)在平面四边形ABCD中,∠ADC90°,∠A45°,AB2,BD5.
(1)求cos∠ADB;
(2)若DC2,求BC.
18.(12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点
C到达点P的位置,且PF⊥BF.
(1)证明:平面PEF⊥平面ABFD;
(2)求DP与平面ABFD所成角的正弦值.
19.(12分)设椭圆C:y21的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA∠OMB.20.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.
第3页(共12页)
f(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;()以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21.(12分)已知函数f(x)xal
x.(1)讨论f(x)的单调性;
(2)若f(x)存在两个极值点x1,x2,证明:
<a2.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修44:坐标系与参数方程(10分)22.(10分)在直角坐标系xOy中,曲线C1的方程为yr