全球旧事资料 分类
第八单元《数学广角》
一、教材分析:与实验教材(《义务教育课程标准实验教科书数学六年级》,下同)的主要区别新教材把《义务教育课程标准实验教科书数学六年级》上册的“鸡兔同笼”问题移至四年级下册,新编“数形结合”的内容。本册的数学广角,编排了一个新的内容──数与形。(一)主要变化本册的数学广角,编排了一个新的内容──数与形。数与形相结合的例子在小学数学教材与教学中随处可见。有的时候,是图形中隐含着数的规律,可利用数的规律来解决图形的问题。本单元的例1以及相关的练习就属于这种情况。例如,第109页第2题(如下图),使学生通过观察,发现第2个图比第1个图增加2个圆片,第3个图比第2个图增加3个圆片,第4个图比第3个图增加4个圆片……这样依次下去,各个图的圆片个数分别是1,3,6,10,…,即1,12,123,1234,…,如果是第
个图,圆片的个数是1234…
,等将来学习了等差数列的知识,就知道圆片个数是。
有的时候,是利用图形来直观地解释一些比较抽象的数学原理与事实,让人一目了然。尤其是小学生思维的抽象程度还不够高,经常需要借助直观模型来帮助理解。例如,利用长方形模型来教学分数乘
f法的算理,利用线段图来帮助学生理解分数除法的算理,利用面积模型来解释两位数乘两位数的算理、乘法分配律、完全平方公式等。
还有的时候,数与形密不可分,可用“数”来解决“形”的问题,也可用“形”来解决“数”的问题。例如,解析几何中,函数图象与方程、方程组互为工具,互为解释,有机融合。小学中的正比例关系和反比例关系图象也很好地反映了这样的思想。
二、教学目标1.使学生会用数形结合的方法解决一些数学问题。2.在解决问题的过程中培养学生的发现模式、应用模式的能力,提高推理能力。
f3.在解决问题的过程中掌握和体会数形结合、极限等数学思想。三、教学重难点自主探索图形中隐藏着的数的规律,会利用图形来解决一些有关数的问题,并学会应用所发现的规律。教学难点是体会和掌握数形结合、归纳推理、极限等基本数学思想。四、教学建议1.注重让学生经历发现模式、应用模式的过程。2.注重让学生体会和运用推理、数形结合、极限等数学思想和方法,感受数学的魅力。
fr
好听全球资料 返回顶部