个题)高考数学新题型选编(共70个题)数学新题型选编(
(Ⅰ)已知函数:fx2
1x
axa
x∈0∞
∈N求函数fx的最小值1、(Ⅱ)证明
a
b
ab
≥a0b0
∈N;22
a
a2a3akaaaak
≥123(Ⅲ)定理若a1a2a3ak均为正数则有1成立kk
其中k≥2k∈Nk为常数.请你构造一个函数gx,证明:当a1a2a3akak1均为正数时,
a1
a2a3ak1aaa3ak1
≥12.k1k1
(Ⅰ)令fx2
1
x
1
ax
10得2x
1ax
1∴2xax∴xa…2分解:当0≤x≤a时,2xxa
∴fx≤0
故fx在0a上递减.
当xafx0故fx在a∞上递增.所以,当xa时,fx的最小值为fa0…4分(Ⅱ)由b0,有fb≥fa0故即fb2
1a
b
ab
≥0
a
b
ab
≥a0b0
∈N.………………………………………5分22
a
a2a3ak1aaa3ak1
(Ⅲ)证明要证:1≥12k1k1
只要证:k1
1a1
a2a3ak1≥a1a2a3ak1
设gxk1
1a1
a2a3x
a1a2a3x
…………………7分
则gxk1
1
x
1
a1a2akx
1令gx0得x
a1a2ak……………………………………………………8分kaa2ak当0≤x≤1时,gx
kxx
1
a1a2akx
1k
≤
a1a2akx
1
a1a2akx
10
故gx在0
a1a2akaaak上递减,类似地可证gx在12∞递增kkaa2akaaak所以当x1时,gx的最小值为g12………………10分kkaaakaaak
aaak
k1
1a1a2ak12a1a2ak12而g12kkkk1
1
ka1a2aka1a2…ak
k1a1a2ak
k
f
k1
1
k1
1
ka1a2akka1a2ak
1k
1a1a2aka1a2ak
kkaa2ak
≥0由定理知k
1a1
a2aka1a2ak
≥0故g1kaaak∵ak1∈0∞∴gak1≥g12≥0k
故k1
1a1
a2a3ak1≥a1a2a3ak1
a1
a2a3ak1aaa3ak1
≥12…………………………14分k1k1
即
2、用类比推理的方法填表、等差数列a
中等比数列b
中
a3=a2da3a4a2a5a1a2a3a4a55a3
答案:b1b2b3b4b5b3
5
b3b2qb3b4b2b5
:对于自r