全球旧事资料 分类
°又∵ABBD∴OB是AD的垂直平分线∴ODOA10在Rt△ODE中,OEODDE
22
102826
∴AEAO-OE1064由∠AOB∠ADE90°∠OAB,∠OEF∠DEA,得△OEF∽△DEA∴
AEEF4EF即,∴EF3;……4分DEOE86
(3)设OEx,①当交点E在O,之间时,C由以点E、F为顶点的三角形与△AOB相似,C、有∠ECF∠BOA或∠ECF∠OAB,当∠ECF∠BOA时,此时△OCF为等腰三角形,点E为OC中点,即OE
5,2
∴E1(
5,0);21AB2
当∠ECF∠OAB时,有CE5xAE10x,∴CF∥AB有CF∵△ECF∽△EAD∴
CECF5x110即解得:xAEAD10x4310∴E2(,0)3
yDBFFCAxOECAxDB
y
O
E
②当交点E在点C的右侧时,∵∠ECF>∠BOA,∴要使△ECF与△BAO相似,只能使∠ECF∠BAO,连结BE,∵BE为Rt△ADE斜边上的中线,∴BEABBD
f杭州长成教育
专业初中、高中辅导
∴∠BEA∠BAO∴∠BEA∠ECF∴CF∥BE∴
CFOCBEOECFCEADAEOCCE∴2OEAE
∵∠ECF∠BAO∠FEC∠DEARt∠,∴△CEF∽△AED∴而AD2BE

5x555175517解得x1x2<0(舍去),2x10x44
∴E3(
5517,0)4
yDBF
O
C
E
Ax
③当交点E在点O的左侧时,∵∠BOA∠EOF>∠ECF∴要使△ECF与△BAO相似,只能使∠ECF∠BAO连结BE,得BE∴∠ECF∠BEA∴CF∥BE∴
1ADAB,∠BEA∠BAO2
CFOCBEOECECF,AEADOCCE∴2OEAE
解得x1
又∵∠ECF∠BAO∠FEC∠DEARt∠,∴△CEF∽△AED∴而AD2BE

5x52x10x
55175517x2<0(舍去)445517,0)4
∵点E在x轴负半轴上∴E4(
f杭州长成教育
专业初中、高中辅导
综上所述:存在以点E、C、F为顶点的三角形与△AOB相似此时点E坐标为:
51055175517E1(,0)E2(,0)E3(、、,0)E4(、,0).……4分2344
yDB
EF
O
C
A
x
3(2011山东德州2210分)●观察计算当a5,b3时,
ab与ab的大小关系是_________________.2ab当a4,b4时,与ab的大小关系是_________________.2
●探究证明过设如图所示,ABC为圆O的内接三角形,AB为直径,C作CD⊥AB于D,ADa,BDb.(1)分别用ab表示线段OC,CD;(2)探求OC与CD表达式之间存在的关系C
A
O
D
B
(用含a,b的式子表示).●归纳结论根据上面的观察计算、探究证明,你能得出
ab与2
ab的大小关系是:
_________________________.●实践应用要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.【答案】●观察计算●探究证明:
abar
好听全球资料 返回顶部