习题11解答
1.设fxyxyx,求fxyf11fxyx1
y
xy
yfxy
解fxyxyx;f111yfxyxx2y21y
yxyxyx
y
fxyxy2x
2.设fxyl
xl
y,证明:fxyuvfxufxvfyufyv
fxyuvl
xyl
uvl
xl
yl
ul
vl
xl
ul
xl
vl
yl
ul
yl
vfxufxvfyufyv
3.求下列函数的定义域,并画出定义域的图形:
(1)fxy1x2y21
4xy2(2)fxyl
1x2y2
(3)fxy1x2y2z2a2b2c2
xyz
(4)fxyz
1x2y2z2
解(1)Dxyx1y1
y
1
1
O1
x
1
(2)Dxy0x2y21y24x
y
1
1
O
1x
1
f(3)D
x
y
xa
22
y2b2
z2c2
1
zc
a
b
O
a
x
(4)Dxyzx0y0z0x2y2z21
z1
by
O
1y
1x
4.求下列各极限:
(1)lim
1xy
1
0
1
x0x2y201
y1
(2)liml
xeyl
1e0l
2
x1y0
x2y2
10
2(3)lim
xy4
2
lim
xy42
xy41
x0
xy
y0
x0y0
xy2xy4
4
(4)limsi
xylimsi
xyx2
x2y
x2xy
y0
y0
5.证明下列极限不存在:
(1)limxyx0xy
y0
(2)limx0
x2y2
x2y2x
y2
y0
(1)证明如果动点Pxy沿y2x趋向00
则limxylimx2x3;x0xyx0x2x
y2x0
如果动点Pxy沿x2y趋向00,则limxylim3y3y0xyy0y
x2y0
f所以极限不存在。
(2)证明如果动点Pxy沿yx趋向00
则limx0
x2y2x2y2xy2
limx0
x4x4
1;
yx0
如果动点Pxy沿y2x趋向00,则lim
x2y2
lim4x40
x0x2y2xy2x04x4x2
y2x0
所以极限不存在。6.指出下列函数的间断点:
(1)fxyy22x;y2x
(2)zl
xy。
解(1)为使函数表达式有意义,需y22x0,所以在y22x0处,函数间断。
(2)为使函数表达式有意义,需xy,所以在xy处,函数间断。
习题12
1.(1)zxyz1y,z1xyxxyx2yxy2
2zycosxy2ycosxysi
xyycosxysi
2xyxzxcosxy2xcosxysi
xyxcosxysi
2xyy
3zy1xyy1yy21xyy1x
l
zyl
1xy,两边同时对y求偏导得1zl
1xyyx
zy
1xy
zzl
1xyxy1xyyl
1xyxy
y
1xy
1xy
1
2y
1
4zx3
x
yx
x2
x32yxx3y
zy
x2y
xx2
1x3y
u
y
x
y1
z
u
1
x
yz
l
x
u
y
y
xzl
x
5xz
yz
zz2
fuzxyz1uzxyz1uxyzl
xy
6
x1xy2zy1xy2zz1xy2z
21zxyzyxzxx0zxy1zyy0
2zxasi
2axbyzybsi
2axby
zxx2a2cos2axbyzxy2abcos2axbyzyy2b2cos2axby3fxy2r