实数根,
hxx22ax22x2a2x2a4exx242ax44aex,
令hxx242ax44aex0,求得x12,x22a2,由a0知x1x2,则fx在2,2a2上单调递增,在22a2上单调递减.当x时,fx0,当x时,fx,∴fx的极大值为f2e22a2,fx的极小值为f2a2e2a222a,所以此时e2a222ake22a2.
1ax1,xx当a0时,fx0在0上恒成立,函数fx在0单调递减,∴fx在0上没有极
22.解:Ⅰ由已知fx的定义域为0。fxa
值点;当a0时,fx0得0x
11,fx0得x,aa
111∴fx在0上递减,在上递增,即fx在x处有极小值.aaa∴当a0时fx在0上没有极值点,当a0时,fx在0上有一个极值点.
Ⅱ∵函数fx在x1处取得极值,∴a1,∴fxbx21令gx1
1l
xb,xx
1l
x,可得gx在0e2上递减,在e2上递增,xx
∴gxmi
ge21Ⅲ解:令hx
1e
2
,即b1
1.e2
1l
xgx1,xx
22
由Ⅱ可知gx在0e上单调递减,则hx在0e上单调递减
7
f∴当0xye2时,hxhy,即当0xe时,1l
x0∴
1l
x1l
y.xy
y1l
y,x1l
xy1l
y当exe2时,1l
x0∴x1l
x
8
fr