的是最优控制和线性函数观测器。同年,上海机械学院完成了一级倒立摆在倾斜轨道上的控制,之后又研制了平行倒立摆的微机控制系统,在该系统中,两根长度不等的铝制摆杆安装在同一小车上,且只能在垂直的平面上做相对于小车的摆动或随小车平行运动,采用PC86微型机,12位的AD转换器和12位的DA转换器,由观测器和线性反馈组成了控制器。
f该校研究生还研制了一级倒立摆系统的模糊控制方法。1987年,清华大学梁任秋等人研究了二级倒立摆系统的控制,并对连续系统极点配置法,连续系统二次型性能指标法,采样系统或离散系统二次型性能指标法,这三种方法进行了探讨和比较。1989年,哈尔滨工业大学研究生胡正涛完成了二级倒立摆控制装置,采用二次型最优调节器,用降维观测器对系统状态进行重构,同时也用线性函数观测器进行了实验。国内进入90年代后,倒立摆方面的主要研究成果有:1992年,北京理工大学自控系研究生李来湘完成了基于简化模型的二级倒立摆控制,以及在线参数系统辨识;1993年,北京航空航天大学自控系张明廉教授等人,利用规约法设计了一级倒立摆仿人控制器,并通过PC286等设备稳定了一级倒立摆,具有良好的鲁棒性;1994年,他们又利用规约法实现了三级倒立摆的稳定控制,达到世界先进水平;1995年,程福雁等人,对二级倒立摆采用模糊控制,实现了稳定的倒立摆控制;1996年,张乃尧,发表了文章“倒立摆的双闭环模糊控制”,该文章被很多文献引用,对应用智能方法控制倒立摆作出相当大的贡献;1997年王晓凯,将倒立摆的数学模型简化,实现倒立摆的控制实验研究;1998年蒋国飞,基于Q学习算法和BP神经网络进行倒立摆控制,实现了神经网络在控制上的应用;王卫华在1999年,运用专家模糊控制,实现了单级倒立摆的动态控制;2002年8月北京师范大学数学系李洪兴教授领导的科研团队采用“变论域自适应模糊控制理论”成功地实现了全球首例“四级倒立摆实物系统控制”。而由此项理论产生的方法和技术将在半导体及精密仪器加工、机器人技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景11。
综上所述,倒立摆是一个典型的物理模型,具有较高的研究价值。国内外对倒立摆系统的研究已经较为丰富和完善。因此利用倒立摆系统进行控制方法理论研究,欠驱动机构、非线性动力学等学科的研究具有较大的便利性和实用性,可以节省一定的精力和时间。而上述文献已经证明了通过倒立摆系统进行研究的这些特点。在今后r