性。
最终总结了下面的内容:
1.初步掌握函数的概念,并能判断两个变量之间的关系是否是函数的关系。
理解函数的概念应抓住以下三点:
(1)函数的概念由三句话组成:“两个变量”,“x的每一个值”,“y有确定的值”;
(2)判断两个变量是否有函数关系不是看它们之间是否有关系是存在,更重要的是看
对于x的每一个确定的值,y是否有唯一确定的值与之对应;
4
f(3)函数不是数,它是指在某一变化的过程中两个变量之间的关系。
2.在一个函数关系式中,能识别自变量与因变量,并能由给定的自变量的值,相应的
求出函数的值。
3.函数的三种表达式:
(1)图象法(用图像来表示函数的方法);
2列表法(把自变量x的一系列值和函数y的对应值列成一个表格来表示函数的反方
法);
(3)解析法(用代数式来表示函数的方法,用来表示函数关系的式子叫做函数关系式,
函数关系式是等式,在书写时有顺序性,一般写成:“函数函自变量的代数式”的形式)。
4.学会用辩证唯物主义的观点的看待一个问题。
5.本节课用到的基本思想是:通过观察、分析、对比、归纳等过程获取数学知识
第六环节:布置作业
习题61
六、教学设计反思
(1)突出重点、突破难点的策略函数是研究现实世界变化规律的一个重要模型,对函数的学习一直以来都是中学阶段
的一个重要的内容。函数的概念是学习后续“函数知识”的最重要的基础内容,而函数的概念又是一个比较抽象的,对它的理解一直是一个教学难点,学生对这些问题的探索以及研究思路都是比较陌生的,因此,在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解。(2)评价方式
根据新课标的评价理念,教师在课堂中应尊重学生的个体差异,满足多样化的学习需求,鼓励学生探索方式、表达方式和解题方法的多样化。在教学活动中教师要关注学生的参与程度和表现出来的思维水平,应关注的是学生对概念的理解水平和学生的语言表达的能力,应关注学生对概念理解的程度和是否能准确的判断所给的问题是否是函数关系,关注
5
f学生能否用辩证唯物主义的观点看待事物,教学中又通过学生“议一议”、“想一想”等活动情况和学生对反馈练习的完成情况,分析学生的认识状况和列出函数关系的r