列的和导出S
的公式来,其本质特征是等差数列从第二项起,每一项都比前一项多了一个d。那么等比数列是不是也可以用类似的方法,构造出一个常数列或者部分常数列呢?让学生亲自去试一试,结果呢?这时候学生们很自然的会用倒序相加的方法来进行思考。结果显然是行不通的。此时教师的主要任务是要让学生的思维迅速发散从倒序相加的定势中解脱出来。抓住学生迫切想解决这个问题的心态,及时地通过媒体进行启发。老师要告诉学生,构造常数列或者部分常数列的思路是正确的。既然倒序行不通,那么还有没有其它的方式构造常数列呢?接着要引导学生从等比数列的定义出发,进一步认识等比数列从第二项起,每一项都是前一项的q倍,也就是说将每一项乘以q以后就变成了它的后一项,那么将S
这个和式的两边同时乘以q,在qS
这个和式中的第一项就是S
的第二项,也就是S
和qS
之间产生了一个错位。由两个和式能否构造常数列或者部分常数列的和式呢?相加行不行?显然不行!相减行不行?显然行。将S
和qS
相减后,中间就得到了
-1项各项都是0的常数列找到了这个常数列,难点就突破了,S
的导出就容易了,导出了S
就基本上达到了本节课的认知目标。为了加深理解,这时还应该对等差、等比两种数列的求和公式的推导过程进行类比和分析:两种数列求和的基本思路都是构造常数列,构造常数列的思想也是其他一些数列求和的基本思想。等比数列在构造常数列的过程中,采用“错位相减”,等差数列采用的是“倒序相加”,倒序相加本质上也是“错位相加”,是一种大幅度的“错位相加”,等比数列只不过是步幅为1的小幅度的“错位相加”。说明一下,在S
的和式中,两边同时乘以q是解决问题构造常数列的关键所在,是推导等比数列求和公式的一把钥匙。所以,这两种数列的求和公式的推导方法,从数学思想和数学方法上来讲是一致的,但是它们也有差异,即错位的方法不同。正是由于这种差异,教师才有了更大的教学空间。当教师把学生从“倒序相加”的思维定式中引导出来的时候,学生的数学思维的深刻性、广阔性等思维品质就得到了提高,思维品质提高了,思维能力也就提高了。这样,这节课的认知目标和素质目标就基本上都达到了。推导出公式之后,对公式的特征要加以说明,以便学生记忆。同时还要对公式的另一种表示形式和应用中的注意事项加以说明。帮助学生弄清其形式和本质,明确其内涵和外延,为灵活运用公式打下基础。有了求和公式后r