全球旧事资料 分类
×4×356(cm2).2222
【点评】此题考查勾股定理和勾股定理的逆定理的应用,辅助线的作法是关键.解题时注意:如果三角形的三边长a,b,c满足a2b2c2,那么这个三角形就是直角三角形.
19.【分析】(1)分析所给四组的勾股数:3、4、5;5、12、13;7、24、25;9、40、41;可得下一组一组勾股数:11,60,61;(2)根据所提供的例子发现股是勾的平方减去1的二分之一,弦是勾的平方加1的二分之一.【解答】解:(1)11,60,61;
21
21(2)后两个数表示为和,22
又∵
≥3,且
为奇数,
f∴由


21
21,三个数组成的数是勾股数.22
故答案为:11,60,61.【点评】本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及关系式进行猜想、证明即可.
20.【分析】(1)A所在的水平线与B所在的竖直线的交点就是满足条件的点;(2)根据勾股定理可求得AB5,则到A的距离是5的点就是所求;(3)到A点的距离是5的格点有2个,同理到B距离是5的格点有2个,据此即可求解.【解答】解:(1)(2)如图所示:
(3)在图2中满足题(2)条件的格点D有4个.故答案是:4.【点评】本题考查了等腰三角形,勾股定理,正确对等腰三角形的顶点讨论是关键.
21.【分析】(1)如图1,设⊙O半径为r,纸盒长度为h,则CD3r,BC23r.根据圆柱的体积和棱柱的体积公式分别求得圆柱型唇膏和纸盒的体积,然后求其比值;(2)求得易拉罐总体积和纸箱容积,然后求得比值;(3)利用(1)(2)的数据进行解答.【解答】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h,则CD3r,BC23r
f则圆柱型唇膏和纸盒的体积之比为:
∴第二种包装的空间利用率大.
【点评】考查了勾股定理的应用,圆的有关计算,立体图形的体积公式,综合性较强,需要学生对所学知识的系统掌握.
22.【分析】(1)连接BD,在直角三角形ABD中,利用勾股定理求出BD,再利用勾股定理的逆定理判断得到三角形BCD为直角三角形,四边形ABCD面积等于三角形ABD面积三角形BCD面积,求出即可;(2)由(1)求出的面积,乘以200即可得到结果.【解答】解:(1)连接BD,在Rt△ABD中,BD2AB2AD2324252,
f在△CBD中,CD2132,BC2122,而12252132,即BC2BD2CD2,∴∠DBC90°,
1111则S四边形ABCDS△BADS△DBCADABDBBC×4×3×12×536;2222
(2)所以需费用36×2007200(元).
【点评】此题考查了勾股定理的应用r
好听全球资料 返回顶部