连结圆上两点,就得到一条线段.指出:连结圆上任意两点的线段叫做弦.如线段CD,AB,EF,DF都叫做⊙O的弦.(如图2)
进一步指出:图中弦AB经过圆心O,我们把经过圆心的弦叫做直径.最后让学生观察,得出:直径等于半径的2倍.
2.弧.
继续观察图2,发现,连结圆上任意两个点可以得到一条弦。同时,这两个点还将圆分成两部分,我们把每一部分叫做圆弧,即:圆上任意两点间的部分叫做圆弧,简称弧。用符
⌒
号“⌒”表示,如以C、D为端点的弧,记做CD。
继续引导学生观察会进一步发现,圆的任意一条直径的两个端点分圆成两条弧,每一条
⌒
⌒
弧我们把它叫做半圆;大于半圆的弧叫做优弧,如图中的弧CED,ECF等,小于半圆的
⌒
⌒
弧叫做劣弧。如图中的CD,EF等。
f3.等圆.能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆.(用投影或电脑演示圆重合的过程,图3)
4.等弧.电脑或投影演示两段弧重合的过程,指出:在同圆或等圆中,能够互相重合的弧叫做等弧.概念辨析:1.直径是弦,弦是直径.这句话正确吗?(学生口答并说明理由)教师强调:直径是弦,但在一般情况下弦不是直径,只有在弦经过圆心时,这弦才叫做直径.2.半圆是弧吗?弧是不是半圆?(学生口答,并说明理由)教师强调:半圆是弧,但在一般情况下弧不是半圆,只有直径的两个端点分圆成的两条弧才是半圆.3.长度相等的两条弧是等弧吗?为什么?(学生口答)教师强调:长度相等的弧不一定是等弧,等弧必须是在同圆或等圆中的弧.(教师用两根长度相等的铁丝,变成弧度不同的两条弧加以比较,此难点很容易被突破)三、一起探究1.让学生在一张半透明的纸上以O为圆心画一个圆,将这张纸片沿过点O的直线对折,你发现了什么?2.将一个圆绕圆心旋转180°后,是否与原图形重合?这能说明什么事实?学生活动:动手操作,探索圆的对称性。结论:圆是轴对称图形,过圆心的每一条直线都是它的对称轴。圆也是中心对称图形,圆心是它的对称中心。四、练习教材P3P4练习1,2五、小结这节课我们学习了哪些主要概念?知道了圆的什么性质?在学生回答的基础上,教师强调:本节课学习了圆的有关概念.在这些概念中,要特别注意“直径和弦”、“弧和半圆”,以及“同圆、等圆和同心圆”这些概念的区别和联系.
f另外还要注意,等圆和等弧的概念,是建立在“能够完全重合”这一前提条件下的,它将作为今后判断两圆或两弧相等的依据.
第二课时一、引入新课上节r