全球旧事资料 分类
,可用定义Aξλξ,同时还应注意特征值和特征向量的性质及其应用;二是有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A的特征值,特征向量来确不定期A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2对应的特征向量,从而确定出A。三是相似对角化以后的应用,在线性代数中至少可用来计算行列式及A
。8。将二次型表示成矩阵形式,用矩阵的方法研究二次型的问题主要有两个:一是化二次型为标准形,这主要是正交变换法,(这和实对称阵正交相似对角阵是一个问题的两种提法),在没有其他要求的情况下,用配方法得到标准形可能更方便些;二是二次型的正定性问题,对具体的数值二次型,一般可用顺序主子式是否全部大于零来判别,而抽象的由给定矩阵的正定性,证明相关矩阵的正定性时,可利用标准形,规范形,特征值等到证明,这时应熟悉二次型正定有关的充分条件和必要条件。
f复习线性代数要注重知识点的衔接与转换kaoya
eolc
20031118清华大学李永乐考研复习现在已经进入整理冲刺阶段,这段时间大家应把复习过的知识系统化综合化,注意搞细搞透搞活,也可适当做几套模拟题,这既可查漏补缺也可兼代积累一点临场经验。本文现针对线性代数课程的特点,提如下建议供考生参考。一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。线性代数的概念很多,重要的有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩矩阵、向量组、二次型,等价矩阵、向量组,线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。往年常有考生没有准确把握住概念的内涵,也没有注意相关概念之间的区别与联系,导致做题时出现错误。例如,矩阵A=α1,α2,…,αm与B=β1,β2…,βm等价,意味着经过初等变换可由A得到B,要做到这一点,关键是看秩rA与rB是否相等,而向量组α1,α2,…αm与β1,β2,…βm等价,说明这两个向量组可以互相线性表出,因而它们有相同的秩,但是向量组有相同的秩时,并不能保证它们必能互相线性表现,也就得不出向量组等价的信息,因此,由向量组α1,α2,…αm与β1,β2,…βm等价r
好听全球资料 返回顶部