围混凝土被挤碎的过程。当纤维端钩最终被拉直时,轴拉荷载很快下降。混凝土的强度越高,基体硬度和脆性越大,上述过程历时也更短。因此当基体强度较高时,轴拉应力应变曲线下降得更快,轴拉韧性指数也有所下降。在四种类型纤维种F1型纤维的增韧效果最好,F2型纤维长径比最小,基体强度较高时出现了纤维拔断现象,因此当基体强度增加时韧性指数不断下降。F3和F4型钢纤维韧性指数均随基体强度升高而增大。这两种纤维均为剪切型,表面较粗糙。在钢纤维和基体之间黏结力的各组分中,摩擦力起主导作用。摩擦力随基体强度的升高而增大,且该黏结类型的拔出破坏是一个持续过程,因此基体强度升高对掺有这两种钢纤维的混凝土韧性起积极作用。这两种纤维的不同之处是F3型的两端有弯钩。由于端钩的存在使得在基体强度不太高时C30和C60,F3型钢纤维的增韧作用优于F4型。当基体强度很高时C80,由于纤维拔断现象影响了F3型的增韧效果,F4型钢纤维的增韧效果叉反过来超过了F3型钢纤维。33钢纤维钢筋混凝土单轴拉伸应力应变曲线典型的钢纤维高强混凝土轴拉应力一应变全曲线为了便于比较,每组试件选出条典型曲线作为代表,表述了轴拉曲线随基体强度的变化规律;表述了轴拉曲线随钢纤维F3型掺量的变化规律。曲线由弹性阶段、弹塑性阶段和下降段软化段组成。下降段存在拐点。从上中可以看到,基体强度越高,轴拉应力一应变全曲线下降得越快。另外,钢纤维掺量的提高可以大大地改善曲线的丰满程度。钢纤维类型对轴拉应力一应变全曲线的形状也有一定的影响。Fl型纤维的曲线是几种钢纤维中最丰满的,并且在拉应变为大约10000个微应变时出现了第二峰值。该现象体现了Fl型纤维良好的增韧效果。当基体强度较高时,由于纤维拔断的出现使得F2和F3型钢纤维试件的轴拉曲线下降端呈阶梯状。F4型纤维的曲线较为平滑,形状与素混凝土曲线相似,但是更为饱满。这是因为长直形钢纤维的拔出过程是相对连续和柔和的四、研究分析由4种钢纤维混凝土的典型拉伸应力应变曲线可以看出:在轴拉条件下,1掺量的钢纤维远远没有达到使混凝土材料实现应变强化的地步,大部分试验曲线都在达到峰值后,出现荷载骤降段。但是,随着变形的增加,有两条曲线有明显的第二峰值出现,而另外两条则没有,正是根据这种现象,可以将其分为增强和增韧两大类钢纤维混凝土,
f有第二峰值的为增韧类,无第二峰值的为增强类。曾经有许多钢纤维混凝土轴拉应力一应变全曲线r