全球旧事资料 分类

133)05
11111110115211301226→01226→01000122622604331001226000uuvuuvuuvTTT基础解系η112100η212010η356001111
通解为Xc1η1c2η2c3η3c1c2c3为任意常数
00
uuv
uuv
uuv
uuv
4
基础解系η12100η22057
T
T
通解为Xc1η1c2η2c1c2为任意常数
22.求下列非齐次线性方程组的全部解,并用其导出组的基础解系表示:x12x23x43(1)2x15x22x34x44x4x5x2x02341x1x22x34x40(2)2x15x24x311x43x2x2x5x12341
f2x1x2x3x4x52(3)x1x22x3x4x543x4x5x2x3x1023451
x12x2x3x44(4)3x16x2x33x485x10xx5x162341
120331解:1)25244→0145200
100010421721712010
212
032255
32→3
010
001
301
1141
x1113x4x24x1x43uuv∴Xc301)T11410)T
c为任意常数)
1124011240102312)254113→03033→01011122510101100000
x112x23x4x21x4uuvXc12010Tc23101T1100Tc1c2为任意常数)2111221121143)112114→013306→3452310011102101212100110013306→010000004408001102x1x4x5x20x2x43
uuvXc110110)Tc210001)T00200)T
c1c2任意常数)
12114124)36138→00510151600
114120404→001000404
130100
fx132x2x4x31
uuvXc12110)Tc21011)T3r
好听全球资料 返回顶部