全球旧事资料 分类
(Ⅱ)四边形MNPQ的四个顶点均在曲线C上,且MQ∥NP,MQ⊥x轴,若直线MN和直线QP交于点S(4,0).问:四边形MNPQ两条对角线的交点是否为定点若是,求出定点坐标;若不是,请说明理由.
21.(本小题满分12分)已知函数f(x)=xe
-x

(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)当0<x<1时f(x)>f(
k),求实数k的取值范围.x
第5页共10页
f请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修41:几何证明选讲如图,AB为圆O的直径,CD为垂直于AB的一条弦,垂足为E,弦BM与CD交于点F.(Ⅰ)证明:A、E、F、M四点共圆;(Ⅱ)若MF=4BF=4,求线段BC的长.23.(本小题满分10分)选修44:坐标系与参数方程在极坐标系下,已知圆O:ρ=cosθ+si
θ和直线l:ρsi
(θ-(Ⅰ)求圆O和直线l的直角坐标方程;(Ⅱ)当θ∈0,π时,求直线l与圆O的公共点的极坐标.24.(本小题满分10分)选修45:不等式选讲已知函数f(x)=|2x-a|+5x.(Ⅰ)求不等式f(x)>5x+1的解集;(Ⅱ)若不等式f(x)≤0的解集为x|x≤-1,求a的值.
2)=.42
第6页共10页
f参考答案:一、选择题BADCCABDBCDA1二、填空题13.14.2115.ee4
16.
12
三、解答题17.解(Ⅰ)由已知,令pq
可得a
a
22
,2分因为a
0,所以a
2
.5分(Ⅱ)b
a
2
,6分
S
1212223232S
122223324

12
1
2
12
2
1
①②
由①②得:S
1212223即:S

2
2
18分
212
2
110分12
整理可得:S
12
1212分18.解(Ⅰ)如图2在ABC中由E、F分别是AC、BC的中点,所以EFAB,又AB平面DEFEF平面DEF,∴AB平面DEF.4分(Ⅱ)以点D为坐标原点以直线DB、DC、DA分别为x轴、y轴、z轴建立空间直角坐标系.则
A001B1,0,0)C030E0
3113F02222
3113DF02222
AB101BC130DE0
设BPBC,则APABBP131,7分注意到APDEAPDE0
11BPBC,33
∴在线段BC上存在点P使AP⊥DE.9分(Ⅲ)平面CDF的法向量DA001,设平面EDF的法向量为
xyz,则
r
好听全球资料 返回顶部