1+33i36416-16i1-i==644
4
f方法二
1+3i+3i+i-2+2i1-i1+i31+i===3=4-81-3i1-3i1-33i-9+33i
3
2
3
118设z是虚数,m=z+是实数,且-1<m<2z1求z的值及z的实部的取值范围1-z2设u=,求证:u为纯虚数1+z3结合2求m-u2的最小值1解∵z是虚数,∴可设z=x+yi,x,y∈R,且y≠0,x-yi11∴m=z+=x+yi+=x+yi+22zx+yix+yyx=x+22+y-x2+y2ix+y∵m是实数,且y≠0,y∴y-22=0,x+y∴x2+y2=1,∴z=1,此时m=2x∵-1<m<2,1∴-1<2x<2,从而有-<x<121-,1∴z=1,z的实部的取值范围是21-z1-x+yi1-x-yi1+x-yiy2证明结合1可知u====-i1+z1+x+yi1+x2+y21+x1又∵x∈-2,1,y≠0,y∴-≠0,∴u为纯虚数1+x3解yy1-x21-x2m-u2=2x--1+xi2=2x+1+x2=2x+=2x+=2x-1+=2x1+x21+x1+x
2+1+-31+x1∵-<x<1,∴1+x>0,22∴2x+1+-3≥21+x22x+1-3=11+x
2当且仅当2x+1=,即x=0x=-2舍去时,等号成立1+x故m-u2的最小值为1,此时z=±i
5
fr