θ,带入数据得S4007361cos2θ19si
θ,当θ90°
S有最小值S1m
443,当θ90°时S有极大值S2m
823,导程38Matlab程序代码t00001360t代表角度a代表距离Sa4007361cost180pi20519si
t180piplottatitle角度位移图像xlabel°ylabelmmholdo
共17页
第9页
f312针杆速度分析
对上述求得的位移式求导,就能得到速度表达式V
2si
2θ2m
cosθ
222
cosθ
361si
2θ24007361cos2θ
19cosθ
在两个极限位置的速度V1V20,至于速度的极值,可再对V求导得其加速度值a
4
2cos2θm2
2cos2θ
4si
22θ4m
cosθ
22232
si
θ19si
θ
1444cos2θ4007361cos2θ130321si
22θ44007361cosθ
232
若令a0,方程仍不好解,故稍后采用作图法求解源程序代码:t00001360t代表角度a代表速度va361si
t90pi24007361cost180pi20519cost180piplottatitle角度速度图像
共17页
第10页
fxlabel°ylabelmmholdo
313针杆加速度分析
由上面的分析已经得到a
4
2cos2θm2
2cos2θ
4si
22θ4m
cosθ
22232
si
θ19si
θ
1444cos2θ4007361cos2θ130321si
22θ44007361cosθ
232
代入θ190°以及θ290°可得两极限位置的加速度a1133mms2,a2247mms2当然方向是向右为正的。
共17页
第11页
f源程序代码t00001360t代表角度a代表加速度abt180pia1444cos2b4007361cosb2130321si
2b244007361cosb215plottatitle角度加速度图像xlabel°ylabelmms2holdo
32曲柄摇杆机构运动分析
如下图,EO2长S,以O2为原点建立坐标系(图中未标注)
共17页
第12页
f321紧线头位移分析
L1cosαL2cosβL3cosθL4
消去β得2L1L3cosα2L3L4cosθ代入cosθ1si
2
L1si
αL2si
βL3si
θ
2L1L3si
αsi
θL22L2L24L122L1L4cosα3
2L2L2L2L12L1L4cosα2342L1L3cosα2L3L4
θ,并令M
N
2L1L3si
αL1si
α(由已知条件已知分母不可能为0)2L1L3cosα2L3L4L1cosαL4
2
于是原式化为N1si
2θ
2MNsi
θM210,解得
θ
MN±N21M2acrsi
N21
于是D点可确定,从而紧线头E点可确定,其坐标(X,Y):
共17页
第13页
fXL4ScosθYSsi
θ
源程序:t代表角度αb为其弧度制t00001360bt180piM78912cosb12861376cosb2016N1096si
b1096cosb36pMNN21M205N21psi
θq1p205qcosθx3693r