全球旧事资料 分类
时,a1=4a1-3,解得a1=1因为S
=4a
-3,则S
-1=4a
-1-3
≥2,所以当
≥2时,a
=S
-S
-1=4a
-4a
-1,4整理得a
=a
-134又a1=1≠0,所以a
是首项为1,公比为的等比数列.3
-142解:由1知a
=,3
-14由b
+1=a
+b
∈N,得b
+1-b
=3可得b
=b1+b2-b1+b3-b2+…+b
-b
-1
-141-
-134=2+=3-1
≥2.431-3当
=1时也满足,
-14所以数列b
的通项公式为b
=3-1
∈N.33等比数列的性质3已知等比数列a
的各项均为正数,且满足a1a9=4,则数列log2a
的前9项之和为________.答案:92解析:∵a1a9=a5=4,∴a5=2,9∴log2a1+log2a2+…+log2a9=log2a1a2…a9=log2a5=9log2a5=9变式训练1各项均为正数的等比数列a
的前
项和为S
,若S10=2,S30=14,则S40=________;2等比数列am的前
项积为T
∈N,已知am-1am+1-2am=0,且T2m-1=128,则m=________.答案:13024解析:1依题意有S10,S20-S10,S30-S20,S40-S30仍成等比数列,214-S20=S202-2,得S20=6所以S10,S20-S10,S30-S20,S40-S30,即为2,4,8,16,所以S40=S30+16
f最新中小学教案、试题、试卷
=3022因为am为等比数列,所以am-1am+1=am又由am-1am+1-2am=0,得am=2则T2m2m-12m-1,所以2=128,m=4-1=am4等比数列的应用4设数列a
的前
项和为S
,已知a1=1,S
+1=4a
+21设b
=a
+1-2a
,求证:数列b
是等比数列;2求数列a
的通项公式.1证明:由a1=1及S
+1=4a
+2,得a1+a2=S2=4a1+2∴a2=5,∴b1=a2-2a1=3S
+1=4a
+2①,又S
=4a
-1+2(
≥2)②,①-②,得a
+1=4a
-4a
-1,∴a
+1-2a
=2a
-2a
-1.∵b
=a
+1-2a
,∴b
=2b
-1,故b
是首项b1=3,公比为2的等比数列.
-12解:由1知b
=a
+1-2a
=32,a
+1a
3∴
+1-
=224a
13故
是首项为,公差为的等差数列.224a
133
-1∴
=+
-1=,2244
-2故a
=3
-12备选变式(教师专享)2已知数列a
的前
项和S
=2
+2
,数列b
的前
项和T
=2-b
1求数列a
与b
的通项公式;22设c
=a
b
,证明:当且仅当
≥3时,c
+1c
1解:a1=S1=4,当
≥2时,a
=S
-S
-1=2
+1-2
-1
=4
又a1=4适合上式,∴a
=4
∈N.将
=1代入T
=2-b
,得b1=2-b1,∴T1=b1=1当
≥2时,T
-1=2-b
-1,r
好听全球资料 返回顶部