全球旧事资料 分类
,并且引起变化的干扰消失。这同样
适用于研究永久性干扰下系统的稳定性,即此时我们可以把它考虑成研究系统在新的平衡点遭受瞬时性干扰的稳定性。
另外,对一些给定的小干扰不稳定或阻尼不足的运行方式,可以通过特征分析方法得到一些控制参数和反映系统稳定性的特征值之间的关系,进而得出提高系统小干扰稳定性的最佳方案。因而进行电力系统的小干扰稳定分析显得尤为重要。
这样,电力系统在某种稳态运行情况下受到小的干扰后,系统的稳定性分析可归结为
1计算给定稳态运行情况下各变量的稳态值。2将描述系统动态行为的非线性微分代数方程在稳态值附近线性化,得到线性微分代数方程。3求出线性微分代数方程的状态矩阵A,根据其特征值的性质判别系统的稳定性。以上讨论的小干扰稳定问题主要涉及发电机组之间的机电振荡,这时我们将发电机组看成是集中的刚体质量块。然而,实际的大型汽轮发电机组的转子具有很复杂的机械结构,它是由几个主要的质量块,如各个汽缸的转子、发电机转子、励磁机转子等,通过有限刚性的轴系联接而成。当发电机受到干扰后,考虑到各质量块之间的弹性,它们在暂态过程中的转速将各不相同,从而导致各质量块之间发生扭转振荡Torsio
alOscillatio
。由于各质量块的转动惯量小于发电机组总的转动惯量,因此各质量块之间扭振的频率要高于发电机组之间机电振荡的频率,这个频率一般在十几到四十几赫兹之间,因此也常将这种振荡称为次同步振荡Subsy
chro
ousOscillatio
,SSo。
f次同步振荡发生后,在发电机组轴系中各质量块之间将产生扭力矩.轴系反复承受扭力矩会造成疲劳积累,从而降低轴系的使用寿命;当扭力矩超过一定限度后会造成大轴出现裂纹甚至断裂。系统出现的次同步振荡主要与励磁控制、调速器、HVDC控制及串联电容器补偿的输电线路的相互作用有关。进行电力系统的次同步振荡分析时,首先应建立汽轮发电机组的轴系模型;另外,由于扭振的频率较高,故系统中各元件不能再采用准稳态模型,而应计及系统的电磁暂态过程。对次同步振荡的详细分析已超出了本书的既定范围,有关电力系统次同步振荡分析的模型及方法,有兴趣的读者可参阅文献5,6。
本章首先推导出电力系统各动态元件的线性化方程,并给出了全系统线性化方程的形成方法和小干扰稳定计算的基本步骤,接着讨论了小干扰稳定分析中的特征值问题和电力系统振荡分析方法,最后介绍了大规模电力系统小干扰稳定分析的几种持殊方法。
f72电力系统动态元r
好听全球资料 返回顶部