不确定
∞
0
)
3431233设函数yarcta
2x,则dy__________2解:dydx14x23234设函数fxxaxbx在x1处取得极小值2,则常数a和b分别为
___________解:f′x3x2axb32ab021aba4b5
2
1
∑a
0
∞
x
在x2收敛,则在x1绝对收敛,即级数∑1
a
绝对收敛
()
A
35曲线yx3x2x1的拐点为__________
32
29微分方程si
xcosydycosxsi
ydx0的通解为Asi
xcosyCCsi
xsi
yCBcosxsi
yCDcosxcosyC
解:y′3x26x2y′′6x60xy1136设函数fxgx均可微,且同为某函数的原函数,有f13g11则
fxgx_________解:fxgxCCf1g12fxgx2
3
f河南专升本论坛wwwyuzsbcom
欢迎加入河南专升本论坛官方QQ群,群号:24658974
37
∫π
π
x2si
3xdx_________
ππππ
解:yC1exC2e3xλ11λ23λ22λ30
2π323232解:∫xsi
xdx∫xdx∫si
xdx2∫xdx0πππ03exx≥0238设函数fx,则∫fx1dx__________0x2x0x1t210122x解:∫fx1dx∫ftdt∫xdx∫edxe01103rr39向量a112与向量b211的夹角为__________rrrrrrab31π解:cosabrrab3ab662y22x40曲线L:绕x轴旋转一周所形成的旋转曲面方程为_________z0
222222解:把y2x中的y换成zy,即得所求曲面方程zy2x
y′′2y′3y0
得分
评卷人
三、计算题(每小题5分,共40分)计算题(
1x2ex46.计算limx→0xsi
32x
2
1x2ex1x2ex02x2xexex1解:limlimlimlimx→0x→0x→0x→016x2xsi
32x8x432x3
222222xex11limlimexx→032x16x→016dy47求函数yx23xsi
2x的导数dx解:取对数得:l
ysi
2xl
x23x,12x3两边对x求导得:y′2cos2xl
x23x2si
2xyx3x2x32si
2x所以y′x3x2cos2xl
x23x2si
2xx3x2x23xsi
2xcos2xl
x23xx23xsi
2x12x3si
2x2
0
00
41设函数zxyx2si
y,则
2z_________xy
2zzy2xsi
y12xcosy解:xxy
42设区域Dxy0≤x≤11≤y≤1,则
21121r