12t(t1,t0),a2
化简得t32t220(),且t2t1.将t2t1代入()式,
tt12t12t23tt13t4t10,则t
显然t
1.4
1不是上面方程得解,矛盾,所以假设不成立,4
234
因此不存在a1,d,使得a1,a2,a3,a4依次构成等比数列.(3)假设存在a1,d及正整数
,k,使得a1,a2列,则a1
a12d
2k
k
,a3
2k
,a4
3k
依次构成等比数
a1d
2
k
,且a1d及a1
k
2
2k
k
a13d
3k
a12d
2
2k
.
分别在两个等式的两边同除以a1则12t
2k
2
k
,并令t
3k
d1(t,t0),a13
2
2k
1t
2
k
,且1t
13t
12t
.
将上述两个等式两边取对数,得
2kl
12t2
kl
1t,且
kl
1t
3kl
13t2
2kl
12t.化简得2kl
12tl
1t
2l
1tl
12t,且3kl
13tl
1t
3l
1tl
13t.再将这两式相除,化简得l
13tl
12t3l
12tl
1t4l
13tl
1t().令gt4l
13tl
1tl
13tl
12t3l
12tl
1t,
222213tl
13t312tl
12t31tl
1t.则gt1t12t13t
f令t13tl
13t312tl
12t31tl
1t,
222
则t613tl
13t212tl
12t1tl
1t.
t6令1tt,则13l
13t4l
12tl
1t.
tt,则2令2t1120.1t12t13t
t0,由g0010200,2
知2t,1t,t,gt在0和0上均单调r