全球旧事资料 分类
2,∠AEO120°,则FC的长度为()222222
A.1B.2C.D.【考点】LB:矩形的性质;KD:全等三角形的判定与性质;T7:解直角三角形.【分析】先根据矩形的性质,推理得到OFCF,再根据Rt△BOF求得OF的长,即可得到CF的长.【解答】解:∵EF⊥BD,∠AEO120°,∴∠EDO30°,∠DEO60°,∵四边形ABCD是矩形,∴∠OBF∠OCF30°,∠BFO60°,∴∠FOC60°30°30°,∴OFCF,
f又∵Rt△BOF中,BOBDAC∴OFta
30°×BO1,∴CF1,,故选:A.
10.将二次函数yx2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y2xb的图象有公共点,则实数b的取值范围是()A.b>8B.b>8C.b≥8D.b≥8
【考点】H6:二次函数图象与几何变换;F7:一次函数图象与系数的关系.【分析】先根据平移原则:上→加,下→减,左→加,右→减写出解析式,再列方程组,有公共点则△≥0,则可求出b的取值.【解答】解:由题意得:平移后得到的二次函数的解析式为:y(x3)21,则2,(x3)12xb,x8x8b0,中国教育出版网△(8)24×1×(8b)≥0,b≥8,故选D.中国教育出版网11.如图,直角△ABC中,∠B30°,点O是△ABC的重心,连接CO并延长交AB于点E,过点E作EF⊥AB交BC于点F,连接AF交CE于点M,则源zzstepcom的值为()来2
A.B.C.D.【考点】K5:三角形的重心;S9:相似三角形的判定与性质.【分析】根据三角形的重心性质可得OCCE,根据直角三角形的性质可得CEAE,根据等边三角形的判定和性质得到CMCE,进一步得到OMCE,即OMAE,根据垂直平分线的性质和含30°的直角三角形的性质可得EF到
f的值.AE,MFEF,依此得到MFAE,从而得【解答】解:∵点O是△ABC的重心,∴OCCE,∵△ABC是直角三角形,∴CEBEAE,∵∠B30°,∴∠FAE∠B30°,∠BAC60°,∴∠FAE∠CAF30°,△ACE是等边三角形,∴CMCE,∴OMCECECE,即OMAE,∵BEAE,∴EFAE,∵EF⊥AB,∴∠AFE60°,∴∠FEM30°,∴MFEF,∴MFAE,∴.故选:D.来源中国教育出版网12.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数
A.B.C.D.【考点】38:规律型:图形的变化类.【分析】首先根据图形中“●”的个数得出数字变化规律,进而求出即可.【解答】解:a131×3,a282×4,a3153×5,a4244×6,…,a

2);∴r
好听全球资料 返回顶部