专题四平面向量
命题观察高考定位
对应学生用书第12页
→→→
→→
1.2017江苏高考如图4-1,在同一个平面内,向量OA,OB,OC的模分别为11,2,OA与OC
→→
→→→
的夹角为α,且ta
α=7,OB与OC的夹角为45°若OC=mOA+
OBm,
∈R,则m+
=
________
图4-1
3法一因为ta
α=7,所以cosα=102,si
α=7102
→→→过点C作CD∥OB交OA的延长线于点D,则OC=OD+DC,∠OCD=45°
→→→又因为OC=mOA+
OB,
→→→→所以OD=mOA,DC=
OB,
→
→
所以OD=m,DC=
→
→
→
在△COD中,由正弦定理得siD
Cα=si
O∠DOCD=si
O∠CODC,
因为si
∠ODC=si
180°-α-∠OCD
=si
α+∠OCD=45,
m2
即7
=2
=2
4
,
1025
f所以
=74,m=54,所以m+
=3
1
7
法二
由ta
α
=7可得cos
α
=5
,si
2
α
=5
,2
→→
→→
则1=52
OAOC→→
=m+
OAOB,2
OAOC
→→→→
由cos∠BOC=
22可得
22=
OBOC→→
=mOAOB+
,2
OBOC
cos∠AOB=cosα+45°=cosαcos45°-si
αsi
45°
12723
=5
×2
2
-5
×2
2
=-5,
则O→AO→B=-35,则m-35
=15,-35m+
=1,
则25m+25
=65,则m+
=3
→→2.2016江苏高考如图4-2,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,BACA
→→
→→
=4,BFCF=-1,则BECE的值是________.
图4-2
78
→→→→→→由题意,得BFCF=BD+DFCD+DF
→→
→→→→
=BD+DF-BD+DF=DF2-BD2
→→=DF2-BD2=-1,①
→→→→→→BACA=BD+DACD+DA
→→
→→
=BD+3DF-BD+3DF
→→=9DF2-BD2
f→→=9DF2-BD2=4②
由①②得D→F2=58,→BD2=183
→→→→→→∴BECE=BD+DECD+DE
→→
→→→→
=BD+2DF-BD+2DF=4DF2-BD2
=4→DF2-→BD2=4×58-183=78
3.2015江苏高考已知向量a=21,b=1,-2,若ma+
b=9,-8m,
∈R,则m-
的值为______.-3∵ma+
b=2m+
,m-2
=9,-8,
∴2mm-+2
==9-,8,∴m
==25,,∴m-
=2-5=-3
4.2013江苏高考设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC若→DE=λ
→1AB
→+λ2ACλ1,λ2为实数,则λ1+λ2的值为________.
12
由题意D→E=B→E-B→D=23→BC-12→BA=23A→C-A→B+12→AB=-16→AB+23→AC,于是λ
11=-6,λ
22=3,
1故λ1+λ2=2
→→5.2014江苏高考如图4-3,在平行四边形ABCD中,已知AB=8,AD=5,CP=3PD,
→→
→→
Ar