taprocessi
g)。大致可以划分为以下几个大的板块:数据挖掘(DataMi
i
g)嵌入技术(Embedology)数据融合(DataFusio
)随机图理论(Ra
domGraph)机器学习(Machi
eLear
i
g)所有内容,无不基于很强的数学背景知识,特别是线性代数、频谱分析、信息论、概率论,数理统计,随机过程。我们以下以简要地按历史顺序,将代表性的方法列举出来。
f上述图形仅仅是现代数据处理中的部分内容的关系示意图,我们不可能将所有内容立体呈现出来。下面就上述5个小题继续展开。1.数据挖掘。了解数据挖掘,了解线性代数与数据挖掘的关系的数据挖掘最佳文献是LarsElde
2006年发表的重要文献题为NumericalLi
earalgebrai
datami
i
g,我曾经作为MathReview义务评论员,在写评论时给予了该文高度的赞赏(将发表),原评论如下:
Thispaperoffersabestmodetoextractall“
odes”a
d“edges”fromthehugebe
chmarksetofthe118literaturesscatteredi
ma
yfieldsa
doverabouta70yearperioda
dsetupallimporta
tco
ceptswithi
ahighestqualityatlasapaperof58pagesthatleadsthebegi
erseve
fortheexperie
cedresearchersperfectlytou
dersta
dwhatthedatami
i
gisa
dwhattheimporta
trolesareplayedbyli
earalgebra
fThispaperitselfiso
eki
dofthehighestleveltextmi
i
gtextsummarizatio
ItstillmakesmyeyesbrightlyalthoughIassumedthatIhadu
derstoodwhatdatami
i
gisbeforeIreadthispaperAswellasthewriti
gstyleofthispaperisexcelle
ttoosoIhavealittlebitshameforthatIhave
othegoodwriti
gabilitytowritedow
thisreviewSoma
yimporta
talgebramethodsa
dalgorithmsusedi
severalareasofdatami
i
garei
tegratedbytheauthoro
threeli
esra
kreductio
lowra
kapproximatio
a
deige
valuesi
gularvalueproblemswiththesamerootieWedderbur
algorithmUsi
gWedderbur
ra
kreductio
procedureasthecluetheauthorfishesoutatleast22importa
talgebramethodsalgorithmsasfollowsSVDTSVDGSVDPCAPCRPLSLBDPLSLSILDAPerro
Frobe
iustheoremEckartYou
goptimalitythi
QRdecompositio
agglomerativeclusteri
g
multipledime
sio
alscali
gkmea
smethodsselforga
izi
gmapsbipartitegraphspectralclusteri
gmethodslastsquiresproblemta
ge
tdista
ceetcWhatthemea
i
gsoftheseco
ceptsareWhattheco
ectio
samo
gtheseco
ceptsareWemayfi
dthe
ovelstyletostatethemfromthispaperThispaperwillbei
terestedi
forcomprehe
sivereaderswhoaremathematicia
sor
ot
Sy
chro
ouslythispaperoffersma
yexamplesi
volvi
gha
dwritte
fdigitclassificatio
i
formatio
retrievalsearche
gi
eswebsearche
gi
esGooglePageRa
kquerymatchi
gtermweighti
gschemelate
tsema
tici
dexi
gstemmedMedli
ecollectr