,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是____cm
15已知椭圆c
x2y21的两焦点为F1F2点Px0y0满足2
0
2x0xx2y01则PF1PF2的取值范围为_______,直线0y0y1与椭圆C的公共22
点个数_____。
小题,解答应写出文字说明,证明过程或演算步骤。三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。解答题:
f16(本小题满分12分)已经函数fx
cos2xsi
2x11gxsi
2x224
Ⅰ函数fx的图象可由函数gx的图象经过怎样变化得出?(Ⅱ)求函数hxfxgx的最小值,并求使用hx取得最小值的x的集合。
17(本小题满分12分)为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示)(Ⅰ)在答题卡上的表格中填写相应的频率;(Ⅱ)估计数据落在(115130)中的概率为多少;(Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数。
18(本小题满分12分)如图,在四面体ABOC中,OC⊥OA。OC⊥OB,∠AOB120°,且OAOBOC1(Ⅰ)设P为AC的中点,Q在AB上且AB3AQ,证明:PQ⊥OA;(Ⅱ)求二面角OACB的平面角的余弦值。
f19(本小题满分12分)已知某地今年年初拥有居民住房的总面积为a(单位:m2),其中有部分旧住房需要拆除。当地有关部门决定每年以当年年初住房面积的10建设新住房,同事也拆除面积为b(单位:m2)的旧住房。(Ⅰ)分别写出第一年末和第二年末的实际住房面积的表达式:(Ⅱ)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30,则每年拆除的旧住房面积b是多少?(计算时取11516)
20(本小题满分13分)已知一条曲线C在y轴右边,C上没一点到点F(10)的距离减去它到y轴距离的差都是1。(Ⅰ)求曲线C的方程(Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点AB的任一直线,都有FA <0?若存在,求出m的取值范围;若不存在,请说明理由。FB
uuuuuurr
f21(本小题满分14分)设函数(x)xf
3
13
a2xbxc,其中a>0,曲线y(x)f在点P(0,(0)f)2
处的切线方程为y1(Ⅰ)确定b、c的r