一、计算流体力学的基本介绍
一、什么是计算流体力学CFD
计算流体力学Computatio
alFluidDy
amics是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。但遗憾的是,常见的流动控制方程如纳维一斯托克斯NavierStokes方程或欧拉Euler方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的。实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。因此,采用CFD方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维一斯托克斯方程或欧拉方程)的数值求解,而CFD软件本质上就是一些求解流动控制方程的计算机程序。
二、计算流体力学的控制方程
计算流体力学的控剖方程就是流体流动的质量、动量和能量守恒方程。守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算。通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。式1一3是未经任何简化的流动守恒微分方程,即纳维一斯托克斯方程NS方程。
NS方程可以表示成许多不同形式,上面的NS方程是所谓的守恒形式,
f之所以称为守恒形式,是因为这种形式的NS方程求解的变量p、pu、pv、pw、pE是守恒型的,是质量、动量和能量的守恒变量。事实上也可以直接求解u、v、w、T等原始变量,这种形式的方程被称为非守恒形式,因为这些变量并不守恒。也可以根据具体的流动状况进行简化。如对于无粘流动NS方程可以简化为欧拉方程(粘性项被去掉),如式4一6所示;于不可压缩流动(液体的流动,马赫数小于03的气体流动),NS方程可以简化为不i缩的NS方程(密度恒定,因此被消去);对于定常流动,NS方程可以去掉时间导数】简化为稳态的NS方程;流体流动往往具有三维性质,但是也常常可以简化为二维流动、一维流动。对于CFD的计算来说三维简化为二维或一维意味着运算量的大幅度降低。
三、求解控制方程的数值方法
对于无法用解析方法求解的微分方程可以用数值方法r