全球旧事资料 分类
所用的思想方法,对我们解决问题很有帮助.类似这样的数学史知识能开阔学生的视野,使学生认识到在探索数学问题时应冲破思维的局限,形成良好的数学思维习惯,从而发展学生的数学思维.14挖掘数学史中的美育资源,提高学生的美学修养数学家克莱因认为:“数学是人类最高超的智力成就,也是人类心灵最独特的创作.绘画使人赏3心悦目,诗歌能动人心弦,但数学能给予以上的一切.”数学是美的,无数数学家都为这种数学的美所折服通过数学史渗透引导学生领悟数学美例如:勾股定理(毕达哥拉斯定理)是大家十分熟悉的一个非常简洁而深刻的定理两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇、印度国王Bhaskara、美国总统Carfield等都给出过它的证明“1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷4魅力”此外,像黄金分割、哥德巴赫猜想、四色问题、多阶幻方等给人以美的欢乐,让学生在学习中觉得心旷神怡.同时,在感叹和欣赏几何图形的对称美、尺规作图的简单美等时,可以形成对数学良好的情感体验,领略数学命题和数学方法的美学价值,提高数学素养和审美能力,从而更热爱数学这门学科,执迷于对数学的探索.15再现历史数学名题,增强学生应用数学的意识和能力根据学生实际情况,结合学校数学选修活动课的开展,引导学生把数学知识应用到生活和生产实践中去,加强学生从实际问题中抽象出数量关系,建构数学模型的训练,把实际问题转化为数学问题让学生尤其是差生感到数学有趣、有用,使学生更加重视发展数学应用能力,提高学生应用数学的自觉性,增强学生解决实际问题的能力数学历史名题可以使数学训练的过程变得富有趣味和探索意义,极大地调动学生的积极性;历史名题的提出一般来说都是自然的,它或者直接提供了相应数学内容的现实背景,或者揭示了实质性的数学思想方法,这对于学生理解数学内容和方法都是重要的;许多历史名题的提出和解决与大数学家有关,让学生感到他本人正在探索一个曾经被大数学家探索过的问题,或许这个问题曾难住过许多有名的人物,学生会感到一种智力的挑战,也会从学习中获得成功的享受;同时,历史名题往往可以提供生动的人文背景《四库全书》中的“庄氏算学”,介绍我市清代数学家庄亨阳的严谨治学、刻苦钻研、不怕困难、为官清廉、献身事业的感人事迹在徐州治水、清理淤沙、扩建水闸、加固堤岸中,他r
好听全球资料 返回顶部