高频电子第五版
31解:f01MHz
2Δf07110699010310kHz
Q
f02Δf07
110610103
100
取R10Ω
则L
QR0
100102314106
159H
C
102L
123141062
159106
159pF
32解:1当01
1L1C1
或ω02
1时,产生并联谐振。L2C2
2当01
1L1C1
或ω02
1时,产生串联谐振。L2C2
3当01
1L1C1
或ω02
1时,产生并联谐振。L2C2
33证明:Z
R
jω0LR
1jω0C
R2LC
jω0LR
1
1ω02LC
R2
LC
R
R
jω0LR
1jω0C
2R
jω0
L
1
1ω02LC
2R
34解:1由15C16052450C5352得C40pF
由12C16052100C5352得C1pF不合理舍去
故采用后一个。
2L
02
1
C
C
1
23145351032450401012
180μH
3
L
C
C’
f35解:Q
0
10C0R
1231415106
1001012
5
212
L0
102C0
1231415106
21001012
112μH
Iom
VomR
11035
02mA
VLomVComQ0VSm2121103212mV
36解:L
102C
123141062
1001012
253μH
Q0
VCVS
1010001
CCX
CCX
102L
123141062253106
100pFCX
200pF
RX
0LQ
0LQ0
23141062531062501
2314106253106100
477Ω
ZX
RX
j10CX
477
j
2
314
1106
200
1012
477
j796Ω
37解:L
1ω02C
123145106
501012202μH
Q0
f02Δf07
5106150103
1003
ξ
Q0
2Δff0
1003
2
555
5106
106
203
因2Δf07
2
2f
,
07
则Q0
05Q0,故
R
05R,
所以应并上21kΩ电阻。
38证明:4πΔf07C
2πf0Cf02Δf07
ω0CQ
g
39解:C
Ci
C2C0C1
C2C0C1
5
202020
202020
183pF
f0
2π
1LC
2314
1081061831012
416MHz
RPQ0
L100C12
08106
20201012
209kΩ
2
2
RRi
RP
C2
C0C1
C1
R0
10
209
20
2020
20
5588kΩ
QL
Rω0L
588103231441610608106
282
2Δf07
f0QL
416106282
148MHz
f312解:1Zf102Zf103Zf1R
313解:1L1
L2
ρ101
1032314106
159μH
C1
C2
1021L1
123141062159106
159pF
M
ηR101
1202314106
318μH
2Z
f1
01M
R2
2
231410631810620
2
20Ω
ZP
R1
L1Rf1
C1
159106
20201591012
25kΩ
3Q1
01L1R1Rf1
23141061591062020
25
42Δf07
2f0Q
2f0ρ1R1
2
10620103
282kHz
5C2
1
022L2
123149501032159106
177pF
Z22
R2
j02L1
102C2
20
j2314106
159106
123141061771012
20
j100
Zf1
01MZ22
2
2314106318106220j100
0768j384Ω
315解:R
LRPC
159106501031591012
20
R1
Rf10M0
Q
2f02f07
2
10614103
100
f316解:1Rf1
01M2
R2
1071065
2
20
Rab
01L2
R1Rf1
107100106240k
520
201M107106r