全球旧事资料 分类
第五章特征选择和提取特征选择和提取是模式识别中的一个关键问题前面讨论分类器设计的时候,一直假定已给出了特征向量维数确定的样本集,其中各样本的每一维都是该样本的一个特征;这些特征的选择是很重要的,它强烈地影响到分类器的设计及其性能;假若对不同的类别,这些特征的差别很大,则比较容易设计出具有较好性能的分类器。特征选择和提取是构造模式识别系统时的一个重要课题在很多实际问题中,往往不容易找到那些最重要的特征,或受客观条件的限制,不能对它们进行有效的测量;因此在测量时,由于人们心理上的作用,只要条件许可总希望把特征取得多一些;另外,由于客观上的需要,为了突出某些有用信息,抑制无用信息,有意加上一些比值、指数或对数等组合计算特征;如果将数目很多的测量值不做分析,全部直接用作分类特征,不但耗时,而且会影响到分类的效果,产生“特征维数灾难”问题。为了设计出效果好的分类器,通常需要对原始的测量值集合进行分析,经过选择或变换处理,组成有效的识别特征;在保证一定分类精度的前提下,减少特征维数,即进行“降维”处理,使分类器实现快速、准确和高效的分类。为达到上述目的,关键是所提供的识别特征应具有很好的可分性,使分类器容易判别。为此,需对特征进行选择。应去掉模棱两可、不易判别的特征;所提供的特征不要重复,即去掉那些相关性强且没有增加更多分类信息的特征。说明:实际上,特征选择和提取这一任务应在设计分类器之前进行;从通常的模式识别教学经验看,在讨论分类器设计之后讲述特征选择和提取,更有利于加深对该问题的理解。所谓特征选择,就是从
个度量值集合x1x2…x
中,按某一准则选取出供分类用的子集,作为降维(m维,m
)的分类特征;所谓特征提取,就是使x1x2…x
通过某种变换,产生m个特征y1y2…ymm
,作为新的分类特征(或称为二次特征);其目的都是为了在尽可能保留识别信息的前提下,降低特征空间的维数,已达到有效的分类。以细胞自动识别为例:通过图像输入得到一批包括正常细胞和异常细胞的图像,我们的任务是根据这些图像区分哪些细胞是正常的,哪些细胞是异常的;首先找出一组能代表细胞性质的特征,为此可计算:细胞总面积;总光密度;胞核面积;核浆比;细胞形状;核内纹理……这样产生出来的原始特征可能很多(几十甚至几百个),或者说原始特征空间维数很高,需要降低(或称压缩)维数以便分类;一种方式是从原始特r
好听全球资料 返回顶部