全球旧事资料 分类
人脸识别解决方案
浙江大华技术股份
有限公司
解决方案部大华人脸识别解决方案
f目录
1人脸识别技术3
2人脸识别解决方案4
3第二章方案概述5
31项目概况5
f1人脸识别技术
随着平安城市基础建设的不断完善和加强前端摄像机采集到的数据呈现一种爆炸式的增长。对于公安行业来说数据总量不断充实的情况下如何从非结构化数据中挖掘结构化信息是平安城市建设的二期目标。另一方面公安行业对车辆的结构化信息采集已逐渐趋于成熟化、普遍化但对人员信息采集和认证技术一直使用传统技侦方式。人脸识别技术在以上情况下解决视频录像、图片等非结构化信息到人员照片、身份信息等结构化的转变。人脸识别技术相对于其他生物识别技术如指纹、指静脉、虹膜等同属于四大生物识别技术具有生物特征唯一性、可测量性、可识别性、终身不变性等特点。但相较其他识别技术具有本质的区别
1非强制性用户不需要专门配合人脸采集设备几乎可以在无意识的状态下就可获取人脸图像这样的取样方式没有“强制性”
2非接触性用户不需要和设备直接接触就能获取人脸图像
3并发性在实际应用场景下可以进行多个人脸的分拣、判断及识别人脸识别技术流程主要包括四个组成部分分别为人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及人脸特征数据匹配与识别。人脸图像采集及检测基于人的脸部特征对输入的人脸图像或视频流首先判断是否存在人脸如果存在人脸则进一步的给出每个脸的位置、大小和各个面部器官的位置信息。人脸图像预
f处理对于人脸的图像预处理是基于人脸采集及检测结果通过人脸智能算法对选择出来的人脸图片进行优化和择优选择挑选当前环境下最优人脸并最终服务于特征提取的过程。其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
人脸图像特征提取人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取的方法归纳起来分为两大类一种是基于知识的表征方法另外一种是基于代数特征或统计学习的表征方法。基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成对这些局部和它们之间结构关系的几何描述可作为识别人脸的重要特征这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法r
好听全球资料 返回顶部