余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?
解:设可能有x间住房安排学生住宿,则根据题意可得:8x>5x+12
解这个不等式,得:x>4当x=5时,住宿的学生可能有37人,符合题意;当x=6时,住宿
的学生可能有42人,符合题意;当x=7时,住宿的学生可能有47人,不符合题意.答:该校可能有5间或6间住房,当有5间住房时,住宿学生有37人;当有6间住房时,住宿学生有42人.(2)学校要到体育用品商场购买篮球和排球共100只.已知篮球、排球的单价分别为130元、100元。购买100只球所花费用多于11800元,但不超过11900元。你认为有哪些购买方案?
解:设买篮球x个,排球100-x个,则根据题意可得:
130x+100(100-x)>11800①
130x+100(100-x)≤11900②
解不等式①得:x>60
1解不等式②得:x≤633
f
1∴不等式组的解集为60<x≤633
答:所以有三中购买方案:①购买篮球61个,排球39个;②购买篮球62个,排球38个;③购买篮球63个,排球37个.
4.课堂小结
1在判断不等式成立与否或由不等式变形求某些字母的范围时,要认真观察不等式的形式与不等号方向。2解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是:①等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质。②不等式组解集的确定方法。③一元一次不等式(组)常与分式、根式、方程、函数等知识联系,解决综合性问题。3求不等式(组)的特殊解
不等式(组)的解往往是无数多个,但有时解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集,然后再找到相应的答案。在这类题目中,要注意对数形结合思想的应用。4确定不等式(组)中字母的取值范围
已知求不等式(组)的解集,确定不等式(组)中字母的取值范围,有以下几种方法:(1)逆用不等式(组)的解集;(2)分类讨论确定;(3)借助数轴确定。
5作业布置:
教材总复习:分别为7、8、9题。
6板书设计:
1知识结构图
例题1例题2
复习巩固
2知识点回顾
例题3例题4
学生板演
7、课后反思:
fr