由1知,S
==2-
-1121-2
λλλλ若S
+λ
+
为等差数列,则S1+λ+,S2+2λ+2,S3+3λ+3成等差数列,则2222
9λ3λ25λ3λ725λ39λ2S2+=S1++S3+,即2+=1+++,解得λ=2424282482又λ=2时,S
+2
+
=2
+2,2显然2
+2成等差数列,故存在实数λ=2,λ使得数列S
+λ
+
成等差数列2112016太原模拟已知数列a
的前
项和为S
,且S
=a
+1+
-2,
∈N,a1=21证明:数列a
-1是等比数列,并求数列a
的通项公式;2设b
=3
∈N的前
项和为T
,证明:T
<6S
-
+1
证明1因为S
=a
+1+
-2,当
≥2时,S
-1=a
+
-1-2=a
+
-3,两式相减,得a
=a
+1-a
+1,即a
+1=2a
-1设c
=a
-1,代入上式,得c
+1+1=2c
+1-1,即c
+1=2c
又S
=a
+1+
-2,则a
+1=S
-
+2,故a2=S1-1+2=3所以c1=a1-1=1,c2=a2-1=2,故c2=2c1综上,对于正整数
,c
+1=2c
都成立,即数列a
-1是等比数列,其首项a1-1=1,公比q=2所以a
-1=1×2
-1
,故a
=2
-1
+1
3
2由S
=a
+1+
-2,得S
-
+2=a
+1=2+1,故S
-
+1=2所以b
=
2363
所以T
=b1+b2+…+b
-1+b
=+2+…+
,①22263×33
2×①,得2T
=3++2+…+
-1,②2223333
②-①,得T
=3++2+…+
-1-
2222
f13
11=31++2+…+
-1-
2222
11-3
+623
=3×-
=6-
1221-2
3
+63
+6因为
>0,所以T
=6-
<622
fr