xl
221x2x1x1
因x2x10,即证令
x21,即证1l
tt1(t1)t(t1)tx1
1令ktl
tt1(t1)则kt10t
7
f∴kt在(1,)上单调递减,∴ktk10即l
tt10,l
tt1①
111t1令htl
t1(t1)则ht220tttt∴ht在(1,)上单调递增,
1∴hth10,即l
t1(t1)②t111综①②得1l
tt1(t1),即k.tx2x1
【证法二:依题意得k
y2y1l
x2l
x1l
x2kx2l
x1kx1,x2x1x2x1
1kx111由hx0得x,当x时,hx0,当0x时,hx0,kkk11hx在0单调递增,在单调递减,又hx1hx2kk111.........12分x1x2即kkx2x1
令hxl
xkx则hx
8
fr