一、知识梳理
这一讲中,我们将要研究的是行程问题中一些综合性较强的题目为此,我们需要先回顾一下已学过的基本数量关系:路程速度×时间;总路程速度和×时间;路程差速度差×追及时间。
二、例题精析
例1小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合问:小明解这道题用了多长时间?
例2甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
例3甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?
f例4甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?
例5甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
例6一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?
例7甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?
f三、课堂练习
1、甲乙两人的步行速度之比是13:11,甲乙两人分别从A,B两地同时出发,相向而行,05小时后相遇,如果他们同向而行,甲追上乙需要几小时。
2、星期天早晨,哥哥和弟弟都要到奶奶家去,弟弟先走5分,哥哥出发后25分追上了弟弟,如果哥哥每分多走5米,那么出发后20分就可以追上弟弟,弟弟每分走多少米?
3、甲乙两人沿一个周长400米的环形跑道匀速前进,甲行走一圈需4分钟,乙行走一圈需7分钟,他们同时同地同向出发,甲走完10圈后,改为反向行走,出发后,每一次甲追上乙或和乙迎面相遇时,二人都击掌示意。问:当二人第十五次击掌时,甲共走了多长时间?乙走了多少路程?
四、课后训练
1晶晶每r