>0,b>0,若a-b>0,则a
-b
>0,∴a-ba
-b
>0,若a-b<0,则a
-b
<0,∴a-ba
-b
>0,∴a+ba
+b
≤2a
+1+b
+110设m∈R,ab1,fx=xm-x1,比较fa与fb的大小解fa-fb=am-a1-bm-b1=(a-m(1)b-(ab)-1)∵ab1,∴b-a0,a-10,b-10,∴(a-1b)-(ab-1)0当m0时,(a-m(1)b-(ab)-1)0,fafb;当m0时,(a-m(1)b-(ab)-1)0,fafb;当m=0时,(a-m(1)b-(ab)-1)=0,fa=fb11设a,b是非负实数,求证:a3+b3≥aba2+b2证明由a,b是非负实数,作差得a3+b3-aba2+b2=a2aa-b+b2bb-a
f=a-ba5-b5当a≥b时,a≥b,从而a5≥b5,得a-ba5-b5≥0;当ab时,ab,从而a5b5,得a-ba5-b50所以a3+b3≥aba2+b2
fr