全球旧事资料 分类
(典型为20~80kVcm)
49下载文档可编辑
f进行处理,作用机理有多种假说,如细胞膜穿孔效应、电磁机制模型、粘弹极性形成模型、电解产物效应、臭氧效应等,研究最多的是细胞膜穿孔效应。动物、植物、微生物的细胞,在外加电场作用下,产生横跨膜电位,绝缘的生物膜由于电场形成了微孔,通透性发生变化,当整个膜电位达到极限值(约为1V)时,膜破裂,膜结构变成无序状态,形成细孔,渗透能力增强。电位差达到临界点,细胞破裂。2多糖的分离纯化2.1除蛋白2.1.1Sevage法
根据蛋白质在氯仿等有机溶剂中变性的特点,用V(氯仿)∶V(戊醇或正丁醇)为5∶1或4∶1,混合物剧烈振摇20~30mi
,蛋白质变性生成凝胶,离心分离,分去水层和溶剂层交界处的变性蛋白质。此种只能除去少量蛋白质,效率不高,须反复多次,多糖有损失。但此方法比较温和,在避免多糖降解上效果较好,如配合加入一些蛋白质水解酶,用Sevage法效果更佳。此法不能除去脂蛋白,因为脂蛋白溶于氯仿。2.1.2三氟三氯乙烷法
将多糖溶液与三氟三氯乙烷等体积混合,低温搅拌10mi
左右,离心分离得上层水层,水层继续用上述方法反复处理几次,得无蛋白质的多糖溶液,此法效率较Seavg法高,但溶剂沸点低,易挥发,不宜大量应
59下载文档可编辑
f用。2.1.3三氯乙酸法
三氯乙酸是一种有机酸,使多糖提取液中的蛋白质与有机酸作用而变性沉淀。该法是在多糖水提液中滴加5~10与多糖水提取液等体积的三氯乙酸,混匀静置过夜,离心除去胶状沉淀,重复以上的操作直至溶液不再继续混浊为止,得无蛋白质的多糖。三氯乙酸浓度越大,除蛋白质效果越好,但对多糖的影响也越大,可能是三氯乙酸对多糖结构具有破坏作用,使多糖降解,而且这种破坏作用随着三氯乙酸浓度增大而增强。
植物多糖常采用三氯乙酸法除蛋白质,也可先用蛋白水解酶,使样品中的蛋白质部分降解后再用Sevag法效果更好;微生物多糖去除蛋白常采用Sevag法、三氟三氯乙烷法;也可用盐析法、有机溶剂萃取等方法除蛋白。2.2多糖的分离
主要有分级沉淀、季铵盐沉淀法、金属盐沉淀法、色谱分离、膜分离、透析、电渗析等,目前大多采用DEAE-凝胶或其他各种不同类型的凝胶柱层析以及离子交换色谱法。2.2.1分级沉淀法
大多数活性多糖可溶于水,3个碳以下的多糖还可溶于乙醇,随着聚合度的增大,多糖在乙醇中的溶解度逐渐降低。根据这一性质可在多糖的浓缩水溶液
69下载文档可编辑
f中分批加入乙醇,使乙醇的体积r
好听全球资料 返回顶部