交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1,按这样的规律进行下去,第2013个正方形的面积为.
16.如图,在平面直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,∠OAB90°.⊙P1是△OAB的内切圆,且P1的坐标为(3,1).(1)OA的长为,OB的长为;(2)点C在OA的延长线上,CD∥AB交x轴于点D.将⊙P1沿水平方向向右平移2个单位得到⊙P2,将⊙P2沿水平方向向右平移2个单位得到⊙P3,按照同样的方法继续操作,依次得到⊙P4,⊙P
.若⊙P1,⊙P2,⊙P
均在△OCD的内部,且⊙P
恰好与CD相切,则此时OD的长为.(用含
的式子表示)
三、解答题(本题有9个小题,共72分)17.计算:.
3
f18.先化简,再求值:
,其中
.
19.如图,点A、B、C分别是⊙O上的点,∠B60°,AC3,CD是⊙O的直径,P是CD延长线上的一点,且APAC.(1)求证:AP是⊙O的切线;(2)求PD的长.
20.若(4xy4)
2
2
2
0,求x,y.
21.一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.22.在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角θ,一般情况下,倾角越小,楼梯的安全程度越高;如图(2)设计者为了提高楼梯的安全程度,要把楼梯的倾角θ1减至θ2,这样楼梯所占用地板的长度由d1增加到d2,已知d14米,∠θ140°,∠θ236°,楼梯占用地板的长度增加了多少米?(计算结果精确到001米,参考数据:ta
40°0839,ta
36°0727)
23.王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
4
f(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;(3)王亮如何分配解题和回顾反思的时间,才r