全球旧事资料 分类
6qB0qdmv2r
32015山东理综,24如图3所示,直径分别为D和2D的同心圆处于同一竖直面内,O为圆心,GH为大圆的水平直径。两圆之间的环形区域Ⅰ区和小圆内部Ⅱ区均存在垂直圆面向里的匀强磁场。间距为d的两平行金属极板间有一匀强电场,上极板开有一小孔。d一质量为m、电量为+q的粒子由小孔下方处静止释放,加速后粒子以竖直向上的速度2v射出电场,由H点紧靠大圆内侧射入磁场。不计粒子的重力。
f图31求极板间电场强度的大小;2若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小;3若Ⅰ区、Ⅱ区磁感应强度的大小分别为点,求这段时间粒子运动的路程。解析d1设极板间电场强度的大小为E,对粒子在电场中的加速运动,由动能定理得qE22mv4mv、,粒子运动一段时间后再次经过HqDqD
1=mv2①2mv2解得E=②qd2设Ⅰ区磁感应强度的大小为B,粒子做圆周运动的半径为R,由牛顿第二定律得qvBmv2=③R如图甲所示,粒子运动轨迹与小圆相切有两种情况。若粒子轨迹与小圆外切,由几何关D系得R=④4
甲4mv联立③④式得B=⑤qD3D若粒子轨迹与小圆内切,由几何关系得R=⑥44mv联立③⑥式得B=⑦3qD3设粒子在Ⅰ区和Ⅱ区做圆周运动的半径分别为R1、R2,由题意可知,Ⅰ区和Ⅱ区磁感2mv4mv应强度的大小分别为B1=、B2=,由牛顿第二定律得qDqDv2v2qvB1=m,qvB2=m⑧R1R2
fDD代入数据得R1=,R2=⑨242πR1设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T1、T2,由运动学公式得T1=,T2=v2πR2⑩v据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图乙所示,根据对称可知,Ⅰ区两段圆弧所对圆心角相同,设为θ1,Ⅱ区内圆弧所对圆心角设为θ2,
乙圆弧和大圆的两个切点与圆心O连线间的夹角设为α,由几何关系得θ1120°θ2=180°α=60°粒子重复上述交替运动回到H点,轨迹如图丙所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t1、t2,可得t1=360°θ1×2×T,α360°1
丙t2=360°θ2×Tα360°2
设粒子运动的路程为s,由运动学公式得s=vt1+t2联立⑨⑩式得s=55πD答案mv24mv4mv12或355πDqdqD3qD
fr
好听全球资料 返回顶部