x
x
4zxyyx;
解:zxyyxxyyxxy1yxyxl
y,
xx
x
zxyl
xyxxyxyx1xyyx1yl
xxy
5fuvl
ul
v;
解:f1f11uul
vvul
vv
6fxyyet2dt;x
解:fex2xex2fey2yey2
x
x
y
y
7uxyz
解:uyzxyz1uxyzl
xzyz1uxyzl
xyzl
y
x
y
z
8usi
x12x2
x
。
f解:
ux1
cosx1
2x2
x
ux2
2cosx1
2x2
x
ux
cosx12x2
x
2求下列函数在指定点处的一阶偏导数:
1zxy1arcsi
x
点01;
y
解:z1y111z101
x
1x2xyx01
y
z0arcsi
y
xy11xz0
y
1x
2yy
y01
y
2zx2eyx1arcta
y点10。x
解:
zx
ey
2x
arcta
yx
x
11
1yx
2
yx2
zx
10
2002
zy
x2ey
x
11
1
yx
2
1x
zy
10
101
3
求曲线
z
x2
4
y2
y4
在点245处的切线对于x轴的倾斜角。
解:
zx24
x2
24
1ta
1
4
4
设
f
xy
xyx2y20
x2y2
证明fxy在点00处连续且偏导数
0
x2y20
存在。
f解:连续性:当x2y20时
xyxyx
x2y2
x2y2
limfxy0f00fxy在(0,0)处连续xy00
fx00
lim
x0
f
0x0x
f
00
lim00x0x
0
f
y
0
0
lim
y0
f
00yy
f00
lim00y0y
0
5求下列函数所有的二阶偏导数:
1fxyxy;
解:fx
y
x
y
1
2x
f
2
yy1xy22fxy
xy1yxy1l
xfy
xyl
x
2fxyl
x2y2
2fxyarcta
y;x
解:
fx
1
1
yx
2
yx2
yx2y2
fy
1
1
yx
2
1x
x2
x
y2
2fx2
2xyx2y2
2
2fy2
2xyx2y2
2
2fxy
2fyx
x2x2
y22x2y22
y2x2x2y22
3zxl
t
解:
zx
l
t
xl
t1
zt
xl
tl
x1t
2zx2
l
tl
t
1xl
t2
2z1xl
t1l
tl
x1xl
t11xl
t11l
tl
x
xtt
t
t
2zl
xxl
tl
x1l
x1t2xl
tl
xxl
tl
x1
t2
t2
t2
6求下列函数指定的高阶偏导数:
f1zxl
xy
x
3z2y
3z;xy2
zx
l
xy
x
1xy
y
l
xy1
2zx2
1xy
y
1x
解:
3zx2y
0
2zxy
1xy
x
1y
3z1xy2y2
2
uxaybzc
6u。xy2z3
解:uaxa1ybzc
6uaxa1bb1yb2cc1c2zc3
x
xy2z3
2uaxa1byzb1cxy
3uxy2
axa1bb1yb2zc
7证明r
x2
y2
z2
满足方程
2rx2
2ry2
2rz2
2r
。
解:
r
1
x2
y2
z
2
12
2x
x
x2
x2y2z2
2rx2
x2
1y2
z2
x1x22
y2
z
2
32
2x
1r
y2z2r2
y2z2r3
由对称性,有:2ry2
x2z2r3
2rz2
x2y2r3
r