故为等腰直角三角形,则平面,又平面,又,所以平面,
的方向为轴正方向,
的方向为
轴正方向,建立如图所示的空间直角坐
过
点作平面
的垂线,垂足为
,根据对称性,显然
点在轴上,设
由题设条件可得下
列坐标:
,
,
,
,
,
,
,由于
,所以
,
解得
,则
点坐标为
由于
,
,设平面
的法
向量
,由
及
得
15页
f26.某乐队参加一户外音乐节,准备从3首原创新曲和5首经典歌曲中随机选择4首进行演唱(1)求该乐队至少演唱1首原创新曲的概率;(2)假定演唱一首原创新曲观众与乐队的互动指数为(为常数),演唱一首经典歌曲观众与乐队的互动指数为,求观众与乐队的互动指数之和的概率分布及数学期望
【答案】1
2
【解析】(1)设“该乐队至少演唱1首原创新曲”的事件为(2)由题意可得:
,则
27.四棱锥(Ⅰ)求证(Ⅱ)是否存在是
中底面中点点使平面
是边长为在侧棱
的菱形侧面
底面
60°
上
平面
?若存在求出若不存在说明理由
16页
f(Ⅲ)是否存在
使
平面
?若存在求出若不存在说明理由
【答案】(I)详见解析;(II)详见解析;(III)详见解析
(Ⅱ)由(Ⅰ)可知因为侧面以底面且平面
底面所以底面
为坐标原点如图建立空间直角坐标系
则
因为
为
中点所以
所以
所以平面
的法向量为
因为
设平面
的法向量为
17页
f则令则
即即
所以
由图可知二面角(Ⅲ)设由(Ⅱ)可知设则
为锐角所以余弦值为
又因为所以在平面所以平面又因为中的法向量为平面所以
所以
即
即
解得
所以当
时
平面
28.如图,
是直角
斜边
上一点,
.
18页
f(I)若(II)若【答案】(I)
,求角,且
的大小;,求的长.
;(II)2
29.某企业有甲、乙两条生产线生产同一种产品,为了检测两条生产线产品的质量情况,随机从两条生产线生产的大量产品中各抽取了40件产品作为样本,检测某一项质量指标值,得到如图所示的频率分布直方图,若品,亦则该产品为示合格产品,若,则该产品为二等品,若,则该产品为一等
19页
f(1)用样本估计总体的思想,从甲、乙两条生产线中各随机抽取一件产品,试估计这两件产品中恰好一件为二等品,一件为一等品的概率;(2)根据图1和图2,对两条生产线从样本的平均值和方差方面进行比较,哪一条生产线更好;(3)从甲生产线的样本中,满足质量指标值在数,求的分布列和数学r