全球旧事资料 分类
9,6)
以上都是简单的例子,似乎不用弄得这么复杂。但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1,2,3,4,5)的元素个数相等,所以我们才说物品共有5个。我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。
例3:9个人坐成一圈,问不同坐法有多少种?9个人排成一排,不同排法有9!种,对应集合为前面的集合A9个人坐成一圈的不同之处在于,没有起点和终点之分。设集合D为坐成一圈的坐法的集合。以任何人为起点,把圈展开成直线,在集合A中都对应不同元素,但在集合D中相当于同一种坐法,所以集合D中每个元素对应集合A中9个元素,所以S(D)9!9
我在另一篇帖子中说的方法是先固定一个人,再排其他人,结果为8!。
f这个方法实际上是找到了一种集合A与集合D之间的对应关系。用集合的思路解决问题的关键就是寻找集合之间的对应关系,使一个集合的子集与另一个集合的元素形成一一对应的关系。
例4:用1、2、3、4、5、6、7、8、9组成数字不重复的九位数,但要求1排在2前面,求符合要求的九位数的个数。集合A为9个数的全排列,把集合A分为两个集合B、C,集合B中1排在2前面,集合C中1排在2后面。则S(B)S(C)S(A)在集合B、C之间建立以下对应关系:集合B中任一元素1和2位置对调形成的数字,对应集合C中相同数字。则这个对应关系为一一对应。因此S(B)S(C)9!2
以同样的思路可解出下题:从1、2、3…,9这九个数中选出3个不同的数作为函数yaxxbxc的系数,且要求abc,问这样的函数共有多少个?
例5:M个球装入N个盒子的不同装法,盒子按顺序排列。这题我们已经讨论过了,我再用更形象的方法说说。假设我们把M个球用细线连成一排,再用N1把刀去砍断细线,就可以把M个球按顺序分为N组。则M个球装入N个盒子的每一种装法都对应一种砍线的方法。而砍线的方法等于M个球与N1把刀的排列方式(如两把刀排在一起,就表示相应的盒子里球数为0)。所以方
f法总数为C(MN1,N1)
例6:7人坐成一排照像其中甲、乙、丙三人的顺序不能改变且不相邻则共有________排法解:甲、乙、丙三人把其他四人分为四部分,设四部分人数分别为X1,X2,X3,X4,其中X1,X4》0,X2,X3》0先r
好听全球资料 返回顶部