全球旧事资料 分类
和或差的平方③x3y3xyx2xyy2立方差公式3、十字相乘xpxqx2pqxpq因式分解三要素:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系互逆变形,因式分解是把和差化为积的形式,而
f整式乘法是把积化为和差添括号法则:如括号前面是正号,括到括号里的各项都不变号,如括号前是负号各项都得改符号。用去括号法则验证
第十章二元一次方程组
1、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程li
earequatio
softwou
k
ow
s。2、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。3、二元一次方程组中两个方程的公共解叫做二元一次方程组的解。4、代入消元法:把二元一次方程中一个方程的一个未知数用含另一个未知数的式子表示出来,再带入另一个方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。5、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法6、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案
第十一章一元一次不等式
一元一次不等式重点:不等式的性质和一元一次不等式的解法。难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。知识点一:不等式的概念1不等式:
用“<”或“≤”,“>”或“≥”等不等号表示大小关系的式子,叫做不等式用“≠”表示不等关系的式子也是不等式
f要点诠释:1不等号的类型
①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;
2要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。2.不等式的解:
r
好听全球资料 返回顶部