=90,又∵PM∥OB,∴∠CNO=∠CPM=90,即CN⊥OB.11(2)①-的值不发生变化.理由如下:OMON
设OM=x,ON=y.∵四边形OMPQ为菱形,∴OQ=QP=OM=x,NQ=y-x.QPNQxy-x∵PQ∥OA,∴∠NQP∠O.又∵∠QNP∠ONC,∴△NQP∽△NOC,∴=,即=,OCON6y111111∴6y-6x=xy.两边都除以6xy,得-=,即-=.xy6OMON6②过P作PE⊥OA于E,过N作NF⊥OA于F,1则S1=OMPE,S2=OCNF,2S1xPE∴=.S23NF∵PM∥OB,∴∠MCP∠O.又∵∠PCM∠NCO,∴△CPM∽△CNO.
OBNQFMPECA
数学试卷第7页(共8页)
f∴
PECM6-x==.NFCO6
S1x6-x11∴==-x-32+.S218182S11∵0x6,由这个二次函数的图像可知,0<≤.S22wwwczsxcomc
数学试卷第8页(共8页)
fr