全球旧事资料 分类
历探究过程.以学生的自主探究为主线,让学生经历实验操作、探究发现、证明论证获得知识.教师只在关键处进行点拨,不足处进行补充.鼓励学生大胆猜测、大胆验证,让学生在研究过程中渗透数学思想,有意识地培养学生的解题能力.第2课时图形的相似2
知识与技能知道相似图形的两个特征:对应边成比例,对应角相等.掌握判断两个多边形是否相似的方法“如果两个多边形满足对应角相等、对应边的比相等,那么这两个多边形相似”.过程与方法经历从生活中的事物中抽象出几何图形的过程,体会由特殊到一般的思想方法,感受图形世界的丰富多彩.情感、态度与价值观在探索中培养学生与他人交流、合作的意识和品质.重点知道相似图形的对应角相等、对应边的比相等.难点能运用相似图形的性质解决问题.一、问题引入1.若线段a=6cm,b=4cm,c=36cm,d=24cm,那么线段a,b,c,d会成比例吗?2.两张相似的地图中的对应线段有什么关系?都成比例二、探究新知1.观察图片,体会相似图形的性质.1下图1中的△A1B1C1是由正△ABC放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?
f2对于图2中两个形状相同、大小不同的正六边形,是否也能得到类似的结论?学生细心观察,认真思考,小组讨论后回答问题,最后得出:它们的对应角相等,对应边的比相等.∠A=∠A1,∠B=∠B1,∠C=∠C1ABBCAC==A1B1B1C1A1C1师:上图中的△ABC,△A1B1C1是形状相同的三角形,其中∠A与∠A1,∠B与∠B1,∠C与∠C1分别相等,称为对应角,AB与A1B1,BC与B1C1,AC与A1C1的比都相等,称为对应边,各角相等、各边成比例的两个多边形叫做相似多边形.2.探究.如图1中是两个相似三角形,它们的对应角有什么关系?对应边的比是否相等?对于图2中两个相似四边形,它们的对应角、对应边是否也有同样的结论?
师生总结:相似多边形的对应角相等,对应边的比相等.1如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.2相似多边形的对应边的比称为相似比.三、例题讲解例如图,四边形ABCD和四边形EFGH相似,求∠α和∠β的大小以及EH的长度x
学生通过运用相似多边形的性质正确解答出∠α和∠β的大小以及EH的长度x解:四边形ABCD和四边形EFGH相似,它们的对应角相等.由此可得∠α=∠C=83°,∠A=∠E=118°,在四边形ABCD中,∠β=360°-78°+83°+118°=81°四边形ABCD和四边形EFGH相似,它们的对r
好听全球资料 返回顶部